Transonic panel flutter

FEM is here used to ascertain the stability and aeroelastic response of thin, 2D panels subjected to Mach 0.8-2.5 flows. In the absence of shocks, it is found that the Euler equations used to represent the unsteady flowfield dynamics predict response behaviors resembling those obtained via potential flow methods. Where shocks do play a significant role in the overall motion of the panel, divergence and limit cycle flutter are observed. In the Mach 1.4-1.5 range, flutter involved the higher modes of the panel, tending toward possible chaotic motion.