A kinetic flux-vector splitting method for single-phase and two-phase shallow flows

A high order kinetic flux-vector splitting method (KFVS) is applied to solve single-phase and two-phase shallow flow equations. The single-phase shallow water equations contain the flow height and momentum. On the other hand, the two-phase flow is considered as a shallow layer of solid granular material and fluid over a horizontal surface. The flow components are assumed to be incompressible and the flow height, solid volume fraction and phase momenta are considered. Our interest lies in the numerical approximation of the above mentioned models, whose complexities pose numerical difficulties. The proposed numerical method is based on the direct splitting of macroscopic flux functions of the system of equations. The two-phase shallow flow model governs a non-homogeneous conservation law and, thus, the scheme is extended to account for the non homogeneous cases. The higher order accuracy of the scheme is achieved by using a MUSCL-type initial reconstruction and the Runge-Kutta time stepping method. A number of numerical test problems are considered. For validation, the results of the proposed method are compared with those obtained from the staggered central scheme. The numerical results show the accuracy and robustness of the suggested solver.

[1]  S. B. Savage,et al.  Two-dimensional spreading of a granular avalanche down an inclined plane Part I. theory , 1993 .

[2]  Laércio Massaru Namikawa,et al.  Parallel adaptive numerical simulation of dry avalanches over natural terrain , 2005 .

[3]  A. K. Patraa,et al.  Parallel adaptive numerical simulation of dry avalanches over natural terrain , 2004 .

[4]  Kun Xu,et al.  Gas-Kinetic Theory-Based Flux Splitting Method for Ideal Magnetohydrodynamics , 1999 .

[5]  Jean-Marc Hérard,et al.  Un schma simple pour les quations de Saint-Venant , 1998 .

[6]  Giovanni B. Crosta,et al.  Numerical modeling of landquakes , 2010 .

[7]  E. Tadmor,et al.  Non-oscillatory central differencing for hyperbolic conservation laws , 1990 .

[8]  Anna Bernini,et al.  Fourth-order balanced source term treatment in central WENO schemes for shallow water equations , 2006, J. Comput. Phys..

[9]  Kun Xu,et al.  Entropy analysis of kinetic flux vector splitting schemes for the compressible Euler equations , 2001 .

[10]  Kun Xu,et al.  A gas-kinetic scheme for shallow-water equations with source terms , 2004 .

[11]  Jean-Pierre Vilotte,et al.  Numerical Modeling of Two-Phase Gravitational Granular Flows with Bottom Topography , 2008 .

[12]  F. Bouchut Nonlinear Stability of Finite Volume Methods for Hyperbolic Conservation Laws: and Well-Balanced Schemes for Sources , 2005 .

[13]  Kun Xu,et al.  A Well-Balanced Gas-Kinetic Scheme for the Shallow-Water Equations with Source Terms , 2002 .

[14]  Randall J. LeVeque,et al.  A class of approximate Riemann solvers and their relation to relaxation schemes , 2001 .

[15]  Kun,et al.  Gas-kinetic Theory Based Flux Splitting Method for Ideal Magnetohydrodynamics , 2022 .

[16]  Marica Pelanti,et al.  A Roe-type scheme for two-phase shallow granular flows over variable topography , 2008 .

[17]  Marina Pirulli,et al.  Results of Back-Analysis of the Propagation of Rock Avalanches as a Function of the Assumed Rheology , 2008 .

[18]  Long Le,et al.  A two-fluid model for avalanche and debris flows , 2005, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[19]  K. Xu,et al.  Gas-kinetic schemes for the compressible Euler equations: Positivity-preserving analysis , 1999 .

[20]  Rémi Abgrall,et al.  Two-Layer Shallow Water System: A Relaxation Approach , 2009, SIAM J. Sci. Comput..

[21]  Eitan Tadmor,et al.  Nonoscillatory Central Schemes for Multidimensional Hyperbolic Conservation Laws , 1998, SIAM J. Sci. Comput..

[22]  Shamsul Qamar,et al.  A high order kinetic flux-vector splitting method for the reduced five-equation model of compressible two-fluid flows , 2009, J. Comput. Phys..

[23]  Fabien Marche,et al.  A Positive Preserving High Order VFRoe Scheme for Shallow Water Equations: A Class of Relaxation Schemes , 2008, SIAM J. Sci. Comput..

[24]  Rou-Fei Chen,et al.  Simulation of Tsaoling landslide, Taiwan, based on Saint Venant equations over general topography , 2009 .

[25]  G. Tadmor,et al.  Non-oscillatory Central Schemes for Multidimensional Hyperbolic Conservation Laws , 1997 .

[26]  S. Pudasaini,et al.  Rapid shear flows of dry granular masses down curved and twisted channels , 2003, Journal of Fluid Mechanics.

[27]  Kun Xu,et al.  Gas-kinetic schemes for the compressible Euler equations : Positivity-preserving analysis , 1999 .

[28]  R. Iverson,et al.  U. S. Geological Survey , 1967, Radiocarbon.

[29]  G. Petrova,et al.  A SECOND-ORDER WELL-BALANCED POSITIVITY PRESERVING CENTRAL-UPWIND SCHEME FOR THE SAINT-VENANT SYSTEM ∗ , 2007 .

[30]  Richard M. Iverson,et al.  Flow of variably fluidized granular masses across three‐dimensional terrain: 1. Coulomb mixture theory , 2001 .

[31]  David L. George,et al.  Augmented Riemann solvers for the shallow water equations over variable topography with steady states and inundation , 2008, J. Comput. Phys..

[32]  Marica Pelanti,et al.  A Riemann solver for single-phase and two-phase shallow flow models based on relaxation. Relations with Roe and VFRoe solvers , 2011, J. Comput. Phys..

[33]  Shamsul Qamar,et al.  A kinetic flux-vector splitting method for the shallow water magnetohydrodynamics , 2010, Comput. Phys. Commun..

[34]  S. Savage,et al.  The motion of a finite mass of granular material down a rough incline , 1989, Journal of Fluid Mechanics.

[35]  François Bouchut,et al.  Sinuous gullies on Mars: Frequency, distribution, and implications for flow properties , 2010 .

[36]  Michael Dumbser,et al.  Well-Balanced High-Order Centred Schemes for Non-Conservative Hyperbolic Systems. Applications to Shallow Water Equations with Fixed and Mobile Bed , 2009 .

[37]  Kolumban Hutter,et al.  Gravity-driven free surface flow of granular avalanches over complex basal topography , 1999, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[38]  Carlos Parés,et al.  NUMERICAL TREATMENT OF WET/DRY FRONTS IN SHALLOW FLOWS WITH A MODIFIED ROE SCHEME , 2006 .

[39]  P. Lax,et al.  On Upstream Differencing and Godunov-Type Schemes for Hyperbolic Conservation Laws , 1983 .

[40]  R. Abgrall,et al.  A Multiphase Godunov Method for Compressible Multifluid and Multiphase Flows , 1999 .

[41]  Kun Xu,et al.  A high-order gas-kinetic method for multidimensional ideal magnetohydrodynamics , 2000 .

[42]  E. Toro Shock-Capturing Methods for Free-Surface Shallow Flows , 2001 .

[43]  J. C. Mandal,et al.  KINETIC FLUX VECTOR SPLITTING FOR EULER EQUATIONS , 1994 .