Duty Cycle and Frequency Modulations in Class-E DC–DC Converters for a Wide Range of Input and Output Voltages

We present an operation scheme for a dc–dc converter consisting of a class-E inverter and a class-E rectifier to always achieve zero-voltage zero-<inline-formula><tex-math notation="LaTeX">$dv\text{/}dt$</tex-math> </inline-formula> switching at a wide range of input and output voltages. To cope with the high sensitivity due to load variations, previous approaches either forgo the zero-<inline-formula><tex-math notation="LaTeX">$dv\text{/}dt$ </tex-math></inline-formula> turn-<sc>on</sc> switching conditions or required additional components and topological changes. Instead, the proposed strategy modulates the duty cycles and switching frequencies depending on the input and output voltages to always achieve zero-<inline-formula><tex-math notation="LaTeX">$dv\text{/}dt$</tex-math> </inline-formula> turn-<sc>on</sc> switching and, thus, minimizes switching losses, while preserving the structural simplicity of the converter. Experiments demonstrate the prototype converter maintaining the desired soft-switching condition under 80–200-V input voltage and 5–20-V output voltage variations. In an additional prototype, we implemented a similar design with synchronous rectification that achieves a peak efficiency of 92.3% at an input voltage of 80 V, an output voltage of 12 V, and an output power of 26.9 W.

[1]  David J. Perreault,et al.  Design of Single-Switch Inverters for Variable Resistance/Load Modulation Operation , 2015, IEEE Transactions on Power Electronics.

[2]  Marian K. Kazimierczuk,et al.  Resonant DC/DC converter with class-E inverter and class-E rectifier , 1989 .

[3]  Juan Rivas-Davila,et al.  Power loss of GaN transistor reverse diodes in a high frequency high voltage resonant rectifier , 2017, 2017 IEEE Applied Power Electronics Conference and Exposition (APEC).

[4]  Jung-Ik Ha,et al.  Analysis and design of resonant rectifier for high-frequency dc-dc converters , 2017, 2017 IEEE Applied Power Electronics Conference and Exposition (APEC).

[5]  D.C. Hamill Time reversal duality and the synthesis of a double class E DC-DC converter , 1990, 21st Annual IEEE Conference on Power Electronics Specialists.

[6]  Dianguo Xu,et al.  Analysis and Design of a High-Frequency DC/DC Converter Based on a Resonant Rectifier , 2017, IEEE Transactions on Industrial Electronics.

[7]  Wei Liang,et al.  3-D-Printed Air-Core Inductors for High-Frequency Power Converters , 2016, IEEE Transactions on Power Electronics.

[8]  Riccardo Rovatti,et al.  An Analytical Approach for the Design of Class-E Resonant DC–DC Converters , 2016, IEEE Transactions on Power Electronics.

[9]  Marian K. Kazimierczuk,et al.  Power losses and efficiency of class-E power amplifier at any duty ratio , 2004, IEEE Transactions on Circuits and Systems I: Regular Papers.

[10]  Marian K. Kazimierczuk,et al.  Analysis and design of class-E/sup 2/ DC/DC converter , 1990 .

[11]  Frederick H. Raab,et al.  Effects of circuit variations on the class E tuned power amplifier , 1978 .

[12]  David J. Perreault,et al.  Transformer synthesis for VHF converters , 2010, The 2010 International Power Electronics Conference - ECCE ASIA -.

[13]  Steadman Jw,et al.  Class E Power Amplifiers and Frequency Multipliers with finite DC-Feed Inductance , 1987 .

[14]  Anne-Johan Annema,et al.  Analytical Design Equations for Class-E Power Amplifiers , 2007, IEEE Transactions on Circuits and Systems I: Regular Papers.

[15]  Jung-Ik Ha,et al.  Single-Switch High-Frequency DC–DC Converter Using Parasitic Components , 2017, IEEE Transactions on Power Electronics.

[16]  Marian K. Kazimierczuk,et al.  Transfer functions of a transformer at different values of coupling coefficient , 2016, IET Circuits Devices Syst..

[17]  Xiaoyong Ren,et al.  A Digital Adaptive Driving Scheme for eGaN HEMTs in VHF Converters , 2017, IEEE Transactions on Power Electronics.

[18]  Wei Liang,et al.  13.56 MHz high voltage multi-level resonant DC-DC converter , 2015, 2015 IEEE 16th Workshop on Control and Modeling for Power Electronics (COMPEL).

[19]  Wei Liang,et al.  Low-Mass RF Power Inverter for CubeSat Applications Using 3-D Printed Inductors , 2017, IEEE Journal of Emerging and Selected Topics in Power Electronics.

[20]  E. Adib,et al.  Single-Switch Soft-Switched Isolated DC–DC Converter , 2012, IEEE Transactions on Power Electronics.

[21]  Marian K. Kazimierczuk,et al.  Analysis of class E zero-voltage-switching rectifier , 1990 .

[22]  Jung-Ik Ha,et al.  Design of GaN transistor-based class E DC-DC converter with resonant rectifier circuit , 2015, 2015 IEEE 3rd Workshop on Wide Bandgap Power Devices and Applications (WiPDA).

[23]  Nathan O. Sokal,et al.  Class of High-Efficiency Tuned Switching Power Amplifiers , 2009 .

[24]  D.J. Perreault,et al.  Resistance Compression Networks for Radio-Frequency Power Conversion , 2007, IEEE Transactions on Power Electronics.

[25]  Juan Rivas-Davila,et al.  Isolated resonant DC-DC converters with a loosely coupled transformer , 2017, 2017 IEEE 18th Workshop on Control and Modeling for Power Electronics (COMPEL).