Central Limit Theorems for Linear Statistics of Heavy Tailed Random Matrices

We show central limit theorems (CLT) for the linear statistics of symmetric matrices with independent heavy tailed entries, including entries in the domain of attraction of α-stable laws and entries with moments exploding with the dimension, as in the adjacency matrices of Erdös-Rényi graphs. For the second model, we also prove a central limit theorem of the moments of its empirical eigenvalues distribution. The limit laws are Gaussian, but unlike the case of standard Wigner matrices, the normalization is the one of the classical CLT for independent random variables.

[1]  Roland Speicher,et al.  Second order freeness and fluctuations of random matrices: I. Gaussian and Wishart matrices and cyclic Fock spaces , 2004, math/0405191.

[2]  Mariya Shcherbina,et al.  Eigenvalue distribution of large weighted random graphs , 2004 .

[3]  I. Zakharevich,et al.  A Generalization of Wigner’s Law , 2006 .

[4]  P. Billingsley,et al.  Probability and Measure , 1980 .

[5]  D. Applebaum Stable non-Gaussian random processes , 1995, The Mathematical Gazette.

[6]  Antonio Auffinger,et al.  Poisson convergence for the largest eigenvalues of heavy tailed random matrices , 2007, 0710.3132.

[7]  H. Yau,et al.  Rigidity of eigenvalues of generalized Wigner matrices , 2010, 1007.4652.

[8]  Dag Jonsson Some limit theorems for the eigenvalues of a sample covariance matrix , 1982 .

[9]  L. Pastur,et al.  CENTRAL LIMIT THEOREM FOR LINEAR EIGENVALUE STATISTICS OF RANDOM MATRICES WITH INDEPENDENT ENTRIES , 2008, 0809.4698.

[10]  C. Male The distributions of traffics and their free product , 2011 .

[11]  Piotr Sniady,et al.  Second order freeness and fluctuations of random matrices: II. Unitary random matrices , 2007 .

[12]  O. Zeitouni,et al.  A CLT for a band matrix model , 2004, math/0412040.

[13]  Zhidong Bai,et al.  CLT for Linear Spectral Statistics of Wigner matrices , 2009 .

[14]  C. Tracy,et al.  Introduction to Random Matrices , 1992, hep-th/9210073.

[15]  Amir Dembo,et al.  Spectral Measure of Heavy Tailed Band and Covariance Random Matrices , 2008, 0811.1587.

[16]  J. Bouchaud,et al.  Theory of Lévy matrices. , 1994, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[17]  C. Bordenave,et al.  Spectrum of Non-Hermitian Heavy Tailed Random Matrices , 2010, 1006.1713.

[18]  M. Shcherbina,et al.  Central limit theorem for fluctuations of linear eigenvalue statistics of large random graphs , 2009, 0911.5684.

[19]  Persi Diaconis,et al.  Linear functionals of eigenvalues of random matrices , 2000 .

[20]  A. Guionnet,et al.  Localization and delocalization of eigenvectors for heavy-tailed random matrices , 2012, 1201.1862.

[21]  M. Taqqu,et al.  Stable Non-Gaussian Random Processes : Stochastic Models with Infinite Variance , 1995 .

[22]  Jianfeng Yao,et al.  On the convergence of the spectral empirical process of Wigner matrices , 2005 .

[23]  C. Male The limiting distributions of large heavy Wigner and arbitrary random matrices , 2012, 1209.2366.

[24]  T. Tao,et al.  Random matrices: Universality of local eigenvalue statistics , 2009, 0906.0510.

[25]  G. B. Arous,et al.  On fluctuations of eigenvalues of random permutation matrices , 2011, 1106.2108.

[26]  G. B. Arous,et al.  The Spectrum of Heavy Tailed Random Matrices , 2007, 0707.2159.

[27]  Thierry Cabanal-Duvillard,et al.  Fluctuations de la loi empirique de grandes matrices aléatoires , 2001 .

[28]  M. Meerschaert Regular Variation in R k , 1988 .

[29]  Miss A.O. Penney (b) , 1974, The New Yale Book of Quotations.

[30]  Ioana Dumitriu,et al.  Functional limit theorems for random regular graphs , 2011, 1109.4094.

[31]  J. W. Silverstein,et al.  Spectral Analysis of Large Dimensional Random Matrices , 2009 .

[32]  Alexander Soshnikov,et al.  Central limit theorem for traces of large random symmetric matrices with independent matrix elements , 1998 .

[33]  E. Wigner On the Distribution of the Roots of Certain Symmetric Matrices , 1958 .

[34]  Alice Guionnet,et al.  Large deviations upper bounds and central limit theorems for non-commutative functionals of Gaussian large random matrices , 2002 .

[35]  Alice Guionnet,et al.  Large Random Matrices: Lectures on Macroscopic Asymptotics , 2009 .

[36]  Feller William,et al.  An Introduction To Probability Theory And Its Applications , 1950 .

[37]  Horng-Tzer Yau,et al.  Semicircle law on short scales and delocalization of eigenvectors for Wigner random matrices , 2007, 0711.1730.

[38]  Alexander Soshnikov The central limit theorem for local linear statistics in classical compact groups and related combinatorial identities , 1999 .

[39]  H. Brezis Functional Analysis, Sobolev Spaces and Partial Differential Equations , 2010 .

[40]  Boris A. Khoruzhenko,et al.  Asymptotic properties of large random matrices with independent entries , 1996 .

[41]  Mariya Shcherbina,et al.  Central Limit Theorem for linear eigenvalue statistics of the Wigner and sample covariance random matrices , 2011, 1101.3249.

[42]  K. Johansson On fluctuations of eigenvalues of random Hermitian matrices , 1998 .

[43]  Florent Benaych-Georges,et al.  Localization and delocalization for heavy tailed band matrices , 2012, 1210.7677.

[44]  Charles Bordenave,et al.  Spectrum of large random reversible Markov chains: Heavy-tailed weights on the complete graph , 2009, 0903.3528.

[45]  P. Diaconis,et al.  On the eigenvalues of random matrices , 1994, Journal of Applied Probability.

[46]  Z. Bai,et al.  CLT for linear spectral statistics of large dimensional sample covariance matrices with dependent data , 2017, Statistical Papers.

[47]  P. Deift Orthogonal Polynomials and Random Matrices: A Riemann-Hilbert Approach , 2000 .

[48]  Sourav Chatterjee,et al.  Fluctuations of eigenvalues and second order Poincaré inequalities , 2007, 0705.1224.

[49]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[50]  Alice Guionnet,et al.  Second order asymptotics for matrix models , 2006, math/0601040.

[51]  Y. Fyodorov,et al.  Universality of level correlation function of sparse random matrices , 1991 .