The threshold for random k-SAT is 2k (ln 2 - O(k))

Let <i>F<sub>k</sub>(n,m)</i> be a random <i>k</i>-SAT formula on <i>n</i> variables formed by selecting uniformly and independently <i>m</i> out of all possible <i>k</i>-clauses. It is well-known that for <i>r ≥ 2<sup>k</sup> ln 2</i>, <i>F<sub>k</sub>(n,rn)</i> is unsatisfiable with probability <i>1-o(1)</i>. We prove that there exists a sequence <i>t<sub>k</sub> = O(k)</i> such that for <i>r ≥ 2<sup>k</sup> ln 2 - t<sub>k</sub></i>, <i>F<sub>k</sub>(n,rn)</i> is satisfiable with probability <i>1-o(1)</i>.Our technique yields an explicit lower bound for every <i>k</i> which for <i>k > 3</i> improves upon all previously known bounds. For example, when <i>k=10</i> our lower bound is 704.94 while the upper bound is 708.94.

[1]  Bart Selman,et al.  Encoding Plans in Propositional Logic , 1996, KR.

[2]  Bart Selman,et al.  Domain-Independent Extensions to GSAT : Solving Large StructuredSatis ability , 1993 .

[3]  P. Erdos,et al.  Some problems concerning the structure of random walk paths , 1963 .

[4]  Hector J. Levesque,et al.  A New Method for Solving Hard Satisfiability Problems , 1992, AAAI.

[5]  A. Dembo,et al.  Thick points for planar Brownian motion and the Erdős-Taylor conjecture on random walk , 2001 .

[6]  Svante Janson,et al.  Bounding the unsatisfiability threshold of random 3-SAT , 2000, Random Struct. Algorithms.

[7]  M. Mézard,et al.  Random K-satisfiability problem: from an analytic solution to an efficient algorithm. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[8]  Amir Dembo,et al.  Large Deviations Techniques and Applications , 1998 .

[9]  Armin Biere,et al.  Symbolic Model Checking without BDDs , 1999, TACAS.

[10]  Hector J. Levesque,et al.  Hard and Easy Distributions of SAT Problems , 1992, AAAI.

[11]  S. Janson,et al.  Bounding the unsatisfiability threshold of random 3-SAT , 2000 .

[12]  Lefteris M. Kirousis,et al.  The probabilistic analysis of a greedy satisfiability algorithm , 2002, Random Struct. Algorithms.

[13]  M. Mézard,et al.  Analytic and Algorithmic Solution of Random Satisfiability Problems , 2002, Science.

[14]  Cristopher Moore,et al.  The asymptotic order of the random k-SAT threshold , 2002, The 43rd Annual IEEE Symposium on Foundations of Computer Science, 2002. Proceedings..

[15]  Bruce A. Reed,et al.  Mick gets some (the odds are on his side) (satisfiability) , 1992, Proceedings., 33rd Annual Symposium on Foundations of Computer Science.

[16]  N. D. Bruijn Asymptotic methods in analysis , 1958 .

[17]  Yannis C. Stamatiou,et al.  Approximating the unsatisfiability threshold of random formulas , 1998, Random Struct. Algorithms.

[18]  Ian Stewart Mathematics: Where drunkards hang out , 2001, Nature.

[19]  Ming-Te Chao,et al.  Probabilistic analysis of a generalization of the unit-clause literal selection heuristics for the k satisfiability problem , 1990, Inf. Sci..

[20]  Olivier Dubois,et al.  Typical random 3-SAT formulae and the satisfiability threshold , 2000, SODA '00.

[21]  Alan M. Frieze,et al.  Analysis of Two Simple Heuristics on a Random Instance of k-SAT , 1996, J. Algorithms.

[22]  Peter C. Cheeseman,et al.  Where the Really Hard Problems Are , 1991, IJCAI.

[23]  Bart Selman,et al.  Pushing the Envelope: Planning, Propositional Logic and Stochastic Search , 1996, AAAI/IAAI, Vol. 2.

[24]  E. Friedgut,et al.  Sharp thresholds of graph properties, and the -sat problem , 1999 .

[25]  Alan M. Frieze,et al.  Random k-Sat: A Tight Threshold For Moderately Growing k , 2005, Comb..

[26]  John Franco,et al.  Probabilistic analysis of the Davis Putnam procedure for solving the satisfiability problem , 1983, Discret. Appl. Math..

[27]  Bart Selman,et al.  Heavy-Tailed Phenomena in Satisfiability and Constraint Satisfaction Problems , 2000, Journal of Automated Reasoning.

[28]  P. Erdos-L Lovász Problems and Results on 3-chromatic Hypergraphs and Some Related Questions , 2022 .

[29]  Riccardo Zecchina,et al.  Survey propagation: An algorithm for satisfiability , 2002, Random Struct. Algorithms.

[30]  Yacine Boufkhad,et al.  A General Upper Bound for the Satisfiability Threshold of Random r-SAT Formulae , 1997, J. Algorithms.