Finding a largest rectangle inside a digital object and rectangularization

Abstract A combinatorial algorithm to find a largest rectangle (LR) inside the inner isothetic cover which tightly inscribes a given digital object without holes is presented here which runs in O ( k . n / g + ( n / g ) log ⁡ ( n / g ) ) time, where n , g , and k being the number of pixels on the contour of the digital object, grid size, and the number of convex regions, respectively. Certain combinatorial rules are formulated to obtain an LR. An LR divides the object in several parts. The object can be rectangularized by recursive generation of a set of LRs and it generates LR-Graph which is useful for shape analysis.

[1]  Dan Roth,et al.  Finding the Largest Area Axis-parallel Rectangle in a Polygon , 1997, Comput. Geom..

[2]  Partha Bhowmick,et al.  TIPS: On Finding a Tight Isothetic Polygonal Shape Covering a 2D Object , 2005, SCIA.

[3]  Fábio Marques,et al.  Partitioning Orthogonal Polygons by Extension of All Edges Incident to Reflex Vertices: Lower and Upper Bounds on the Number of Pieces , 2004, ICCSA.

[4]  Andrés Caro,et al.  Finding the largest area rectangle of arbitrary orientation in a closed contour , 2012, Appl. Math. Comput..

[5]  Arindam Biswas,et al.  Finding Largest Rectangle Inside a Digital Object , 2016, CTIC.

[6]  Bhargab B Bhattacharya,et al.  Efficient algorithms for Identifying All Maximal Isothetic Empty Rectangles in VLSI Layout Design , 1990, FSTTCS.

[7]  Jack Sklansky,et al.  Minimal rectangular partitions of digitized blobs , 1984, Comput. Vis. Graph. Image Process..

[8]  Alok Aggarwal,et al.  Fast algorithms for computing the largest empty rectangle , 1987, SCG '87.

[9]  Jeffrey D Ullma Computational Aspects of VLSI , 1984 .

[10]  Bernard Chazelle,et al.  Computing the Largest Empty Rectangle , 1986, SIAM J. Comput..

[11]  J. Sack,et al.  Minimum Decompositions of Polygonal Objects , 1985 .

[12]  Partha Bhowmick,et al.  Construction of isothetic covers of a digital object: A combinatorial approach , 2010, J. Vis. Commun. Image Represent..

[13]  T. Shermer Recent Results in Art Galleries , 1992 .

[14]  T. C. Shermer,et al.  Recent results in art galleries (geometry) , 1992, Proc. IEEE.

[15]  Godfried T. Toussaint,et al.  PATTERN RECOGNITION AND GEOMETRICAL COMPLEXITY. , 1980 .

[16]  Azriel Rosenfeld,et al.  Digital geometry - geometric methods for digital picture analysis , 2004 .

[17]  Chee-Keng Yap,et al.  A polynomial solution for the potato-peeling problem , 1986, Discret. Comput. Geom..

[18]  D. T. Lee,et al.  On the maximum empty rectangle problem , 1984, Discret. Appl. Math..

[19]  Asish Mukhopadhyay,et al.  On Computing a Largest Empty Arbitrarily Oriented Rectangle , 2003, Int. J. Comput. Geom. Appl..