Quantum teleportation of multiple degrees of freedom of a single photon

Quantum teleportation provides a ‘disembodied’ way to transfer quantum states from one object to another at a distant location, assisted by previously shared entangled states and a classical communication channel. As well as being of fundamental interest, teleportation has been recognized as an important element in long-distance quantum communication, distributed quantum networks and measurement-based quantum computation. There have been numerous demonstrations of teleportation in different physical systems such as photons, atoms, ions, electrons and superconducting circuits. All the previous experiments were limited to the teleportation of one degree of freedom only. However, a single quantum particle can naturally possess various degrees of freedom—internal and external—and with coherent coupling among them. A fundamental open challenge is to teleport multiple degrees of freedom simultaneously, which is necessary to describe a quantum particle fully and, therefore, to teleport it intact. Here we demonstrate quantum teleportation of the composite quantum states of a single photon encoded in both spin and orbital angular momentum. We use photon pairs entangled in both degrees of freedom (that is, hyper-entangled) as the quantum channel for teleportation, and develop a method to project and discriminate hyper-entangled Bell states by exploiting probabilistic quantum non-demolition measurement, which can be extended to more degrees of freedom. We verify the teleportation for both spin–orbit product states and hybrid entangled states, and achieve a teleportation fidelity ranging from 0.57 to 0.68, above the classical limit. Our work is a step towards the teleportation of more complex quantum systems, and demonstrates an increase in our technical control of scalable quantum technologies.

[1]  Hong,et al.  Measurement of subpicosecond time intervals between two photons by interference. , 1987, Physical review letters.

[2]  Charles H. Bennett,et al.  Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels. , 1993, Physical review letters.

[3]  Ekert,et al.  "Event-ready-detectors" Bell experiment via entanglement swapping. , 1993, Physical review letters.

[4]  Harald Weinfurter,et al.  Experimental Bell-State Analysis , 1994 .

[5]  H. Weinfurter,et al.  Experimental quantum teleportation , 1997, Nature.

[6]  Wolfgang Dür,et al.  Quantum Repeaters: The Role of Imperfect Local Operations in Quantum Communication , 1998 .

[7]  Isaac L. Chuang,et al.  Demonstrating the viability of universal quantum computation using teleportation and single-qubit operations , 1999, Nature.

[8]  I. Chuang,et al.  Quantum Teleportation is a Universal Computational Primitive , 1999, quant-ph/9908010.

[9]  E. Knill,et al.  A scheme for efficient quantum computation with linear optics , 2001, Nature.

[10]  A. Vaziri,et al.  Entanglement of the orbital angular momentum states of photons , 2001, Nature.

[11]  J. D. Franson,et al.  Quantum relays and noise suppression using linear optics , 2002 .

[12]  Markus Aspelmeyer,et al.  Experimental realization of freely propagating teleported qubits , 2003, Nature.

[13]  N. Gisin,et al.  Long-distance teleportation of qubits at telecommunication wavelengths , 2003, Nature.

[14]  E. Knill,et al.  Deterministic quantum teleportation of atomic qubits , 2004, Nature.

[15]  F. Schmidt-Kaler,et al.  Deterministic quantum teleportation with atoms , 2004, Nature.

[16]  Christopher Edward Kuklewicz,et al.  Ultrabright source of polarization-entangled photons from cavity-enhanced downconversion , 2005 .

[17]  Nathan K Langford,et al.  Generation of hyperentangled photon pairs. , 2005, Physical review letters.

[18]  A. Hayashi,et al.  Reexamination of optimal quantum state estimation of pure states (5 pages) , 2004, quant-ph/0410207.

[19]  Bo Zhao,et al.  Experimental quantum teleportation of a two-qubit composite system , 2006, quant-ph/0609129.

[20]  R. Prevedel,et al.  High-speed linear optics quantum computing using active feed-forward , 2007, Nature.

[21]  Paul G. Kwiat,et al.  Hyperentangled Bell-state analysis , 2007 .

[22]  H. J. Kimble,et al.  The quantum internet , 2008, Nature.

[23]  G. Tóth,et al.  Entanglement detection , 2008, 0811.2803.

[24]  T. Wei,et al.  Beating the channel capacity limit for linear photonic superdense coding , 2008, 1009.5128.

[25]  Ebrahim Karimi,et al.  Optimal quantum cloning of orbital angular momentum photon qubits through Hong–Ou–Mandel coalescence , 2009, 1010.5214.

[26]  Ebrahim Karimi,et al.  Quantum information transfer from spin to orbital angular momentum of photons. , 2008, Physical review letters.

[27]  Stephen M. Barnett,et al.  Precise quantum tomography of photon pairs with entangled orbital angular momentum , 2009 .

[28]  L. Marrucci,et al.  The polarizing Sagnac interferometer: a tool for light orbital angular momentum sorting and spin-orbit photon processing. , 2010, Optics express.

[29]  Robert W. Boyd,et al.  Quantum Correlations in Optical Angle–Orbital Angular Momentum Variables , 2010, Science.

[30]  Jian-Wei Pan,et al.  Quantum teleportation and entanglement distribution over 100-kilometre free-space channels , 2012, Nature.

[31]  Xiaosong Ma,et al.  Quantum teleportation over 143 kilometres using active feed-forward , 2012, Nature.

[32]  M. Babiker,et al.  The angular momentum of light , 2012 .

[33]  H. Weinfurter,et al.  Multiphoton entanglement and interferometry , 2003, 0805.2853.

[34]  Robert Fickler,et al.  Quantum Entanglement of High Angular Momenta , 2012, Science.

[35]  V. D'Ambrosio,et al.  Complete experimental toolbox for alignment-free quantum communication , 2012, Nature Communications.

[36]  Heng Shen,et al.  Deterministic quantum teleportation between distant atomic objects , 2012, Nature Physics.

[37]  Shuntaro Takeda,et al.  Deterministic quantum teleportation of photonic quantum bits by a hybrid technique , 2013, Nature.

[38]  M. Mohseni,et al.  Hyperentanglement-enabled direct characterization of quantum dynamics. , 2012, Physical review letters.

[39]  Y. Salathe,et al.  Deterministic quantum teleportation with feed-forward in a solid state system , 2013, Nature.

[40]  Jian-Wei Pan,et al.  QUANTUM OPTICS Push-button photon entanglement , 2014 .

[41]  R. N. Schouten,et al.  Unconditional quantum teleportation between distant solid-state quantum bits , 2014, Science.