Dynamic contrast-enhanced MRI radiomics model predicts epidermal growth factor receptor amplification in glioblastoma, IDH-wildtype

[1]  R. Colen,et al.  Pre-operative MRI radiomics model non-invasively predicts key genomic markers and survival in glioblastoma patients , 2022, Journal of Neuro-Oncology.

[2]  R. El Fatimy,et al.  Metabolic Rewiring in Glioblastoma Cancer: EGFR, IDH and Beyond , 2022, Frontiers in Oncology.

[3]  Q. Cheng,et al.  Glioma targeted therapy: insight into future of molecular approaches , 2022, Molecular cancer.

[4]  Jong-Hee Chang,et al.  Radiomics-based prediction of multiple gene alteration incorporating mutual genetic information in glioblastoma and grade 4 astrocytoma, IDH-mutant , 2021, Journal of Neuro-Oncology.

[5]  J. Barnholtz-Sloan,et al.  CBTRUS Statistical Report: Primary Brain and Other Central Nervous System Tumors Diagnosed in the United States in 2014-2018. , 2021, Neuro-oncology.

[6]  R. Rosell,et al.  Efficacy of osimertinib plus bevacizumab in glioblastoma patients with simultaneous EGFR amplification and EGFRvIII mutation , 2021, Journal of Neuro-Oncology.

[7]  J. H. Kim,et al.  Prediction of Prognosis in Glioblastoma Using Radiomics Features of Dynamic Contrast-Enhanced MRI , 2021, Korean journal of radiology.

[8]  C. Vandevoorde,et al.  MDM2/X Inhibitors as Radiosensitizers for Glioblastoma Targeted Therapy , 2021, Frontiers in Oncology.

[9]  G. Reifenberger,et al.  The 2021 WHO Classification of Tumors of the Central Nervous System: a summary. , 2021, Neuro-oncology.

[10]  Hua Cao,et al.  Analysis of the EGFR Amplification and CDKN2A Deletion Regulated Transcriptomic Signatures Reveals the Prognostic Significance of SPATS2L in Patients With Glioma , 2021, Frontiers in Oncology.

[11]  Leland S. Hu,et al.  Uncertainty quantification in the radiogenomics modeling of EGFR amplification in glioblastoma , 2021, Scientific Reports.

[12]  P. Lambin,et al.  Prognostic and Predictive Value of Integrated Qualitative and Quantitative Magnetic Resonance Imaging Analysis in Glioblastoma , 2021, Cancers.

[13]  M. Vicente,et al.  Molecular Targeting of Epidermal Growth Factor Receptor (EGFR) and Vascular Endothelial Growth Factor Receptor (VEGFR) , 2021, Molecules.

[14]  N. Salamon,et al.  Multiparametric MRI texture analysis in prediction of glioma biomarker status: added value of MR diffusion , 2021, Neuro-oncology advances.

[15]  H. Engelhard,et al.  Tumor Development and Angiogenesis in Adult Brain Tumor: Glioblastoma , 2020, Molecular Neurobiology.

[16]  Ho Sung Kim,et al.  Diffusion- and perfusion-weighted MRI radiomics model may predict isocitrate dehydrogenase (IDH) mutation and tumor aggressiveness in diffuse lower grade glioma , 2019, European Radiology.

[17]  C. Sohn,et al.  Dynamic Contrast-Enhanced MR Imaging of Nonenhancing T2 High-Signal-Intensity Lesions in Baseline and Posttreatment Glioblastoma: Temporal Change and Prognostic Value , 2019, American Journal of Neuroradiology.

[18]  M. El-Sibai,et al.  Hypoxia and EGF Stimulation Regulate VEGF Expression in Human Glioblastoma Multiforme (GBM) Cells by Differential Regulation of the PI3K/Rho-GTPase and MAPK Pathways , 2019, Cells.

[19]  M. J. van den Bent,et al.  Survival of diffuse astrocytic glioma, IDH1/2-wildtype, with molecular features of glioblastoma, WHO grade IV: a confirmation of the cIMPACT-NOW criteria. , 2019, Neuro-oncology.

[20]  Jeffrey H. Chuang,et al.  LONGITUDINAL MOLECULAR TRAJECTORIES OF DIFFUSE GLIOMA IN ADULTS , 2019, Nature.

[21]  M. J. van den Bent,et al.  Defining EGFR amplification status for clinical trial inclusion , 2019, Neuro-oncology.

[22]  S. Heiland,et al.  Automated quantitative tumour response assessment of MRI in neuro-oncology with artificial neural networks: a multicentre, retrospective study. , 2019, The Lancet. Oncology.

[23]  Klaus H. Maier-Hein,et al.  nnU-Net: Breaking the Spell on Successful Medical Image Segmentation , 2019, ArXiv.

[24]  Jong-Hee Chang,et al.  Targeted next-generation sequencing panel (TruSight Tumor 170) in diffuse glioma: a single institutional experience of 135 cases , 2019, Journal of Neuro-Oncology.

[25]  M. Smits,et al.  Perfusion MRI in treatment evaluation of glioblastomas: Clinical relevance of current and future techniques , 2018, Journal of magnetic resonance imaging : JMRI.

[26]  J. Wong,et al.  Quantitative magnetic resonance imaging and radiogenomic biomarkers for glioma characterisation: a systematic review , 2018, The British journal of radiology.

[27]  Minming Zhang,et al.  Predicting epidermal growth factor receptor gene amplification status in glioblastoma multiforme by quantitative enhancement and necrosis features deriving from conventional magnetic resonance imaging , 2018, Medicine.

[28]  Andriy Fedorov,et al.  Computational Radiomics System to Decode the Radiographic Phenotype. , 2017, Cancer research.

[29]  Manfred Westphal,et al.  EGFR as a Target for Glioblastoma Treatment: An Unfulfilled Promise , 2017, CNS Drugs.

[30]  A. Czirók,et al.  Cell Dispersal Influences Tumor Heterogeneity and Introduces a Bias in NGS Data Interpretation , 2017, Scientific Reports.

[31]  S. Choi,et al.  Dynamic contrast-enhanced MR imaging in predicting progression of enhancing lesions persisting after standard treatment in glioblastoma patients: a prospective study , 2017, European Radiology.

[32]  Paul Kinahan,et al.  Radiomics: Images Are More than Pictures, They Are Data , 2015, Radiology.

[33]  Kyung K. Peck,et al.  Dynamic contrast enhanced T1 MRI perfusion differentiates pseudoprogression from recurrent glioblastoma , 2015, Journal of Neuro-Oncology.

[34]  A. Gupta,et al.  Pretreatment Dynamic Susceptibility Contrast MRI Perfusion in Glioblastoma: Prediction of EGFR Gene Amplification , 2015, Clinical Neuroradiology.

[35]  T. Cloughesy,et al.  Arterial Spin-Labeling Perfusion MRI Stratifies Progression-Free Survival and Correlates with Epidermal Growth Factor Receptor Status in Glioblastoma , 2015, American Journal of Neuroradiology.

[36]  P. Lambin,et al.  Decoding tumour phenotype by noninvasive imaging using a quantitative radiomics approach , 2014, Nature Communications.

[37]  Shawn M. Gillespie,et al.  Single-cell RNA-seq highlights intratumoral heterogeneity in primary glioblastoma , 2014, Science.

[38]  W. Shi,et al.  Potential Role of Preoperative Conventional MRI Including Diffusion Measurements in Assessing Epidermal Growth Factor Receptor Gene Amplification Status in Patients with Glioblastoma , 2013, American Journal of Neuroradiology.

[39]  Ryan A. Grant,et al.  Use of magnetic perfusion-weighted imaging to determine epidermal growth factor receptor variant III expression in glioblastoma. , 2012, Neuro-oncology.

[40]  Sanjay Behari,et al.  Discriminant analysis to classify glioma grading using dynamic contrast-enhanced MRI and immunohistochemical markers , 2012, Neuroradiology.

[41]  R. Galli,et al.  Epidermal growth factor receptor expression identifies functionally and molecularly distinct tumor-initiating cells in human glioblastoma multiforme and is required for gliomagenesis. , 2010, Cancer research.

[42]  L. Chin,et al.  Malignant astrocytic glioma: genetics, biology, and paths to treatment. , 2007, Genes & development.

[43]  Areen K. Al-Bashir,et al.  New algorithm for quantifying vascular changes in dynamic contrast‐enhanced MRI independent of absolute T1 values , 2007, Magnetic Resonance in Medicine.

[44]  R. Salgia,et al.  Epidermal Growth Factor Receptor–Mediated Signal Transduction in the Development and Therapy of Gliomas , 2006, Clinical Cancer Research.

[45]  H. Kitano,et al.  A comprehensive pathway map of epidermal growth factor receptor signaling , 2005, Molecular systems biology.

[46]  Martin J. van den Bent,et al.  Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. , 2005, The New England journal of medicine.

[47]  A. Chakravarti,et al.  The epidermal growth factor receptor pathway mediates resistance to sequential administration of radiation and chemotherapy in primary human glioblastoma cells in a RAS-dependent manner. , 2002, Cancer research.

[48]  D. O’Rourke,et al.  Epidermal growth factor receptor transcriptionally up-regulates vascular endothelial growth factor expression in human glioblastoma cells via a pathway involving phosphatidylinositol 3'-kinase and distinct from that induced by hypoxia. , 2000, Cancer research.

[49]  Eero P. Simoncelli,et al.  A Parametric Texture Model Based on Joint Statistics of Complex Wavelet Coefficients , 2000, International Journal of Computer Vision.

[50]  M. Knopp,et al.  Estimating kinetic parameters from dynamic contrast‐enhanced t1‐weighted MRI of a diffusable tracer: Standardized quantities and symbols , 1999, Journal of magnetic resonance imaging : JMRI.

[51]  W. Mayhan VEGF increases permeability of the blood-brain barrier via a nitric oxide synthase/cGMP-dependent pathway. , 1999, American journal of physiology. Cell physiology.

[52]  Robert M. Haralick,et al.  Textural Features for Image Classification , 1973, IEEE Trans. Syst. Man Cybern..

[53]  Nitesh V. Chawla,et al.  SMOTE: Synthetic Minority Over-sampling Technique , 2002, J. Artif. Intell. Res..

[54]  R. Borchardt,et al.  VEGF increases BMEC monolayer permeability by affecting occludin expression and tight junction assembly. , 2001, American journal of physiology. Heart and circulatory physiology.

[55]  Goldman,et al.  Epidermal growth factor stimulates vascular endothelial growth factor production by human malignant glioma cells: a model of glioblastoma multiforme pathophysiology. , 1993, Molecular biology of the cell.