Contrast Adaptation and Representation in Human Early Visual Cortex

[1]  K. Naka,et al.  S‐potentials from colour units in the retina of fish (Cyprinidae) , 1966, The Journal of physiology.

[2]  C Blakemore,et al.  On the existence of neurones in the human visual system selectively sensitive to the orientation and size of retinal images , 1969, The Journal of physiology.

[3]  R. Vautin,et al.  Responses of single cells in cat visual cortex to prolonged stimulus movement: neural correlates of visual aftereffects. , 1977, Journal of neurophysiology.

[4]  P. Lennie,et al.  Pattern-selective adaptation in visual cortical neurones , 1979, Nature.

[5]  A. Dean The relationship between response amplitude and contrast for cat striate cortical neurones. , 1981, The Journal of physiology.

[6]  I. Ohzawa,et al.  Contrast gain control in the cat visual cortex , 1982, Nature.

[7]  D. G. Albrecht,et al.  Striate cortex of monkey and cat: contrast response function. , 1982, Journal of neurophysiology.

[8]  A. Dean Adaptation-induced alteration of the relation between response amplitude and contrast in cat striate cortical neurones , 1983, Vision Research.

[9]  D. G. Albrecht,et al.  Spatial contrast adaptation characteristics of neurones recorded in the cat's visual cortex. , 1984, The Journal of physiology.

[10]  I. Ohzawa,et al.  Contrast gain control in the kitten's visual system. , 1985, Journal of neurophysiology.

[11]  I. Ohzawa,et al.  Contrast gain control in the cat's visual system. , 1985, Journal of neurophysiology.

[12]  F. Heitger,et al.  The functional role of contrast adaptation , 1988, Vision Research.

[13]  S. Yantis,et al.  Uniqueness of abrupt visual onset in capturing attention , 1988, Perception & psychophysics.

[14]  P. Lennie,et al.  Contrast adaptation in striate cortex of macaque , 1989, Vision Research.

[15]  P. H. Schiller,et al.  The role of the primate extrastriate area V4 in vision. , 1991, Science.

[16]  A. B. Bonds Temporal dynamics of contrast gain in single cells of the cat striate cortex , 1991, Visual Neuroscience.

[17]  Mark W. Greenlee,et al.  The time course of adaptation to spatial contrast , 1991, Vision Research.

[18]  H Bruder,et al.  Image reconstruction for echo planar imaging with nonequidistant k‐space sampling , 1992, Magnetic resonance in medicine.

[19]  A. B. Bonds,et al.  Contrast adaptation in striate cortical neurons of the nocturnal primate bush baby (Galago crassicaudatus) , 1993, Visual Neuroscience.

[20]  Adrian T. Lee,et al.  fMRI of human visual cortex , 1994, Nature.

[21]  J. Braun Visual search among items of different salience: removal of visual attention mimics a lesion in extrastriate area V4 , 1994, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[22]  J W Belliveau,et al.  Borders of multiple visual areas in humans revealed by functional magnetic resonance imaging. , 1995, Science.

[23]  R D Freeman,et al.  Contrast coding by cells in the cat's striate cortex: Monocular vs. binocular detection , 1995, Visual Neuroscience.

[24]  X Hu,et al.  Retrospective estimation and correction of physiological fluctuation in functional MRI , 1995, Magnetic resonance in medicine.

[25]  R. Andersen,et al.  Functional analysis of human MT and related visual cortical areas using magnetic resonance imaging , 1995, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[26]  Y. Zhou,et al.  Adaptation of visually evoked responses of relay cells in the dorsal lateral geniculate nucleus of the cat following prolonged exposure to drifting gratings , 1996, Visual Neuroscience.

[27]  A. Kleinschmidt,et al.  Dynamic MRI sensitized to cerebral blood oxygenation and flow during sustained activation of human visual cortex , 1996, Magnetic resonance in medicine.

[28]  X. Hu,et al.  Fast interleaved echo‐planar imaging with navigator: High resolution anatomic and functional images at 4 tesla , 1996, Magnetic resonance in medicine.

[29]  D. Heeger,et al.  Linear Systems Analysis of Functional Magnetic Resonance Imaging in Human V1 , 1996, The Journal of Neuroscience.

[30]  T. L. Davis,et al.  Characterization of Cerebral Blood Oxygenation and Flow Changes during Prolonged Brain Activation , 2022 .

[31]  Michael J. Berry,et al.  Adaptation of retinal processing to image contrast and spatial scale , 1997, Nature.

[32]  D H Brainard,et al.  The Psychophysics Toolbox. , 1997, Spatial vision.

[33]  L. P. O'Keefe,et al.  Adaptation to contingencies in macaque primary visual cortex. , 1997, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[34]  M. Carandini,et al.  A tonic hyperpolarization underlying contrast adaptation in cat visual cortex. , 1997, Science.

[35]  Luis C. Maas,et al.  Decoupled automated rotational and translational registration for functional MRI time series data: The dart registration algorithm , 1997, Magnetic resonance in medicine.

[36]  S. Zeki,et al.  The position and topography of the human colour centre as revealed by functional magnetic resonance imaging. , 1997, Brain : a journal of neurology.

[37]  A. Dale,et al.  Selective averaging of rapidly presented individual trials using fMRI , 1997, Human brain mapping.

[38]  D G Pelli,et al.  The VideoToolbox software for visual psychophysics: transforming numbers into movies. , 1997, Spatial vision.

[39]  A. Dale,et al.  The Retinotopy of Visual Spatial Attention , 1998, Neuron.

[40]  A M Dale,et al.  Randomized event‐related experimental designs allow for extremely rapid presentation rates using functional MRI , 1998, Neuroreport.

[41]  S. Miyauchi,et al.  Attention-regulated activity in human primary visual cortex. , 1998, Journal of neurophysiology.

[42]  B. Rosen,et al.  Dynamic functional imaging of relative cerebral blood volume during rat forepaw stimulation , 1998, Magnetic resonance in medicine.

[43]  Frances S. Chance,et al.  Synaptic Depression and the Temporal Response Characteristics of V1 Cells , 1998, The Journal of Neuroscience.

[44]  P. Cavanagh,et al.  Retinotopy and color sensitivity in human visual cortical area V8 , 1998, Nature Neuroscience.

[45]  Seiji Ogawa,et al.  Mapping of lateral geniculate nucleus activation during visual stimulation in human brain using fMRI , 1998, Magnetic resonance in medicine.

[46]  E. DeYoe,et al.  A physiological correlate of the 'spotlight' of visual attention , 1999, Nature Neuroscience.

[47]  D. Heeger,et al.  Neuronal basis of contrast discrimination , 1999, Vision Research.

[48]  K. Obermayer,et al.  Contrast Adaptation and Infomax in Visual Cortical Neurons , 1999, Reviews in the neurosciences.

[49]  G. Crelier,et al.  Linear coupling between cerebral blood flow and oxygen consumption in activated human cortex. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[50]  D. Somers,et al.  Functional MRI reveals spatially specific attentional modulation in human primary visual cortex. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[51]  D. Heeger,et al.  Spatial attention affects brain activity in human primary visual cortex. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[52]  D. G. Albrecht,et al.  Spikes versus BOLD: what does neuroimaging tell us about neuronal activity? , 2000, Nature Neuroscience.

[53]  Maria V. Sanchez-Vives,et al.  Cellular Mechanisms of Long-Lasting Adaptation in Visual Cortical Neurons In Vitro , 2000, The Journal of Neuroscience.

[54]  Maria V. Sanchez-Vives,et al.  Membrane Mechanisms Underlying Contrast Adaptation in Cat Area 17In Vivo , 2000, The Journal of Neuroscience.

[55]  E. Chichilnisky,et al.  Adaptation to Temporal Contrast in Primate and Salamander Retina , 2001, The Journal of Neuroscience.

[56]  Nikos K. Logothetis,et al.  Motion Processing in the Macaque: Revisited with Functional Magnetic Resonance Imaging , 2001, The Journal of Neuroscience.

[57]  N. Logothetis,et al.  Neurophysiological investigation of the basis of the fMRI signal , 2001, Nature.

[58]  C. Furmanski,et al.  Selective Adaptation to Color Contrast in Human Primary Visual Cortex , 2001, The Journal of Neuroscience.

[59]  M. Raichle,et al.  Searching for a baseline: Functional imaging and the resting human brain , 2001, Nature Reviews Neuroscience.

[60]  F. Hyder,et al.  Total neuroenergetics support localized brain activity: Implications for the interpretation of fMRI , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[61]  K. Uğurbil,et al.  Effect of Basal Conditions on the Magnitude and Dynamics of the Blood Oxygenation Level-Dependent fMRI Response , 2002, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[62]  T. Hendler,et al.  Contrast sensitivity in human visual areas and its relationship to object recognition. , 2002, Journal of neurophysiology.

[63]  David J Heeger,et al.  Response Suppression in V1 Agrees with Psychophysics of Surround Masking , 2003, The Journal of Neuroscience.

[64]  B. Fischer,et al.  Visual field representations and locations of visual areas V1/2/3 in human visual cortex. , 2003, Journal of vision.

[65]  J. Movshon,et al.  Neuronal Adaptation to Visual Motion in Area MT of the Macaque , 2003, Neuron.

[66]  Leslie G. Ungerleider,et al.  Neuroimaging Studies of Attention: From Modulation of Sensory Processing to Top-Down Control , 2003, The Journal of Neuroscience.

[67]  M. Cynader,et al.  Synaptic depression in visual cortex tissue slices: an in vitro model for cortical neuron adaptation , 2004, Experimental Brain Research.

[68]  J. A. Movshon,et al.  The dependence of response amplitude and variance of cat visual cortical neurones on stimulus contrast , 1981, Experimental Brain Research.

[69]  P. Lennie,et al.  Profound Contrast Adaptation Early in the Visual Pathway , 2004, Neuron.

[70]  Sabine Kastner,et al.  Functional imaging of the human lateral geniculate nucleus and pulvinar. , 2004, Journal of neurophysiology.

[71]  A. T. Smith,et al.  Motion after-effects in cat striate cortex elicited by moving gratings , 2004, Experimental Brain Research.

[72]  R. Buxton,et al.  Modeling the hemodynamic response to brain activation , 2004, NeuroImage.

[73]  Alex R. Wade,et al.  Visual field maps and stimulus selectivity in human ventral occipital cortex , 2005, Nature Neuroscience.

[74]  Stephen A Engel,et al.  Adaptation of Oriented and Unoriented Color-Selective Neurons in Human Visual Areas , 2005, Neuron.

[75]  M. Carrasco,et al.  Transient Attention Enhances Perceptual Performance and fMRI Response in Human Visual Cortex , 2005, Neuron.