Algorithmic Pirogov–Sinai theory

We develop an efficient algorithmic approach for approximate counting and sampling in the low-temperature regime of a broad class of statistical physics models on finite subsets of the lattice $$\mathbb {Z}^d$$ Z d and on the torus $$(\mathbb {Z}/n\mathbb {Z})^d$$ ( Z / n Z ) d . Our approach is based on combining contour representations from Pirogov–Sinai theory with Barvinok’s approach to approximate counting using truncated Taylor series. Some consequences of our main results include an FPTAS for approximating the partition function of the hard-core model at sufficiently high fugacity on subsets of $$\mathbb {Z}^d$$ Z d with appropriate boundary conditions and an efficient sampling algorithm for the ferromagnetic Potts model on the discrete torus $$(\mathbb {Z}/n\mathbb {Z})^d$$ ( Z / n Z ) d at sufficiently low temperature.

[1]  Christian Borgs,et al.  Tight bounds for mixing of the Swendsen–Wang algorithm at the Potts transition point , 2010, ArXiv.

[2]  Aldo Procacci,et al.  Cluster Expansion for Abstract Polymer Models. New Bounds from an Old Approach , 2007 .

[3]  Mark Jerrum,et al.  Polynomial-Time Approximation Algorithms for the Ising Model , 1990, SIAM J. Comput..

[4]  M. Jerrum,et al.  Random cluster dynamics for the Ising model is rapidly mixing , 2016, SODA.

[5]  Alexander I. Barvinok,et al.  Weighted counting of solutions to sparse systems of equations , 2017, Combinatorics, Probability and Computing.

[6]  B. Marcus,et al.  Representation and Poly-time Approximation for Pressure of $$\mathbb {Z}^2$$Z2 Lattice Models in the Non-uniqueness Region , 2015, 1508.06590.

[7]  FPTAS for #BIS with Degree Bounds on One Side , 2014, STOC.

[8]  Allan Sly,et al.  Quasi-polynomial mixing of the 2D stochastic Ising model with , 2010, 1012.1271.

[9]  R. Baxter,et al.  Hard hexagons: exact solution , 1980 .

[10]  Eric Vigoda,et al.  Inapproximability of the Partition Function for the Antiferromagnetic Ising and Hard-Core Models , 2012, Combinatorics, Probability and Computing.

[11]  Dana Randall,et al.  PR ] 3 N ov 2 01 6 Phase Coexistence for the Hard-Core Model on Z 2 , 2016 .

[12]  Alan M. Frieze,et al.  Torpid mixing of some Monte Carlo Markov chain algorithms in statistical physics , 1999, 40th Annual Symposium on Foundations of Computer Science (Cat. No.99CB37039).

[13]  Dana Randall,et al.  Sampling spin configurations of an Ising system , 1999, SODA '99.

[14]  Allan Sly,et al.  Counting in two-spin models on d-regular graphs , 2014 .

[15]  László Lovász,et al.  Left and right convergence of graphs with bounded degree , 2010, Random Struct. Algorithms.

[16]  Adam Timar,et al.  Bondary-connectivity via graph theory , 2007, 0711.1713.

[17]  Alexander I. Barvinok,et al.  Computing the partition function for graph homomorphisms with multiplicities , 2016, J. Comb. Theory, Ser. A.

[18]  David Preiss,et al.  Cluster expansion for abstract polymer models , 1986 .

[19]  Geoffrey Grimmett The Random-Cluster Model , 2002, math/0205237.

[20]  G. Joyce On the hard-hexagon model and the theory of modular functions , 1988, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences.

[21]  Alistair Sinclair,et al.  Random-cluster dynamics in Z 2 , 2016, SODA 2016.

[22]  Eric Vigoda,et al.  #BIS-hardness for 2-spin systems on bipartite bounded degree graphs in the tree non-uniqueness region , 2013, J. Comput. Syst. Sci..

[23]  Alistair Sinclair,et al.  Random-cluster dynamics in $${{\mathrm{\mathbb {Z}}}}^2$$Z2 , 2017 .

[24]  Alexander I. Barvinok,et al.  Combinatorics and Complexity of Partition Functions , 2017, Algorithms and combinatorics.

[25]  Sandra Mitchell Hedetniemi,et al.  Constant Time Generation of Rooted Trees , 1980, SIAM J. Comput..

[26]  Alexander I. Barvinok,et al.  Computing the Permanent of (Some) Complex Matrices , 2014, Foundations of Computational Mathematics.

[27]  Michael Newman,et al.  Modular properties of the hard hexagon model , 1987 .

[28]  Reza Gheissari,et al.  Mixing Times of Critical Two‐Dimensional Potts Models , 2018 .

[29]  Y. Sinai,et al.  Phase diagrams of classical lattice systems continuation , 1976 .

[30]  R. Otter The Number of Trees , 1948 .

[31]  Jeff Kahn,et al.  On Phase Transition in the Hard-Core Model on ${\mathbb Z}^d$ , 2004, Combinatorics, Probability and Computing.

[32]  Mark Jerrum,et al.  Approximate Counting, Uniform Generation and Rapidly Mixing Markov Chains , 1987, International Workshop on Graph-Theoretic Concepts in Computer Science.

[33]  Viresh Patel,et al.  Deterministic polynomial-time approximation algorithms for partition functions and graph polynomials , 2016, Electron. Notes Discret. Math..

[34]  Miloš Zahradník,et al.  An alternate version of Pirogov-Sinai theory , 1984 .

[35]  T. D. Lee,et al.  Statistical Theory of Equations of State and Phase Transitions. II. Lattice Gas and Ising Model , 1952 .

[36]  Jan Vondrák,et al.  Computing the Independence Polynomial: from the Tree Threshold down to the Roots , 2016, SODA.

[37]  Lahoussine Laanait,et al.  Interfaces in the Potts model I: Pirogov-Sinai theory of the Fortuin-Kasteleyn representation , 1991 .

[38]  James B. Shearer,et al.  On a problem of spencer , 1985, Comb..

[39]  Martin E. Dyer,et al.  The Relative Complexity of Approximate Counting Problems , 2000, Algorithmica.

[40]  Will Perkins,et al.  Algorithms for #BIS-hard problems on expander graphs , 2018, SODA.

[41]  Leslie G. Valiant,et al.  Random Generation of Combinatorial Structures from a Uniform Distribution , 1986, Theor. Comput. Sci..

[42]  Dror Weitz,et al.  Counting independent sets up to the tree threshold , 2006, STOC '06.

[43]  Yvan Alain Velenik,et al.  Statistical Mechanics of Lattice Systems: A Concrete Mathematical Introduction , 2017 .

[45]  Leslie Ann Goldberg,et al.  Approximating the partition function of the ferromagnetic Potts model , 2010, JACM.

[46]  C. Borgs,et al.  Finite-size scaling for Potts models , 1991 .

[47]  Wojciech Samotij,et al.  Odd cutsets and the hard-core model on Z^d , 2011 .

[48]  Alexander I. Barvinok,et al.  Computing the Partition Function for Cliques in a Graph , 2014, Theory Comput..

[49]  Mario Ullrich Rapid mixing of Swendsen–Wang dynamics in two dimensions , 2012, 1212.4908.

[50]  A. Scott,et al.  The Repulsive Lattice Gas, the Independent-Set Polynomial, and the Lovász Local Lemma , 2003, cond-mat/0309352.

[51]  Y. Sinai,et al.  Phase diagrams of classical lattice systems , 1975 .

[52]  Allan Sly,et al.  Computational Transition at the Uniqueness Threshold , 2010, 2010 IEEE 51st Annual Symposium on Foundations of Computer Science.

[53]  Martin E. Dyer,et al.  On the Sampling Problem for H-Colorings on the Hypercubic Lattice , 2001, Graphs, Morphisms and Statistical Physics.

[54]  D. Gamarnik,et al.  Sequential Cavity Method for Computing Free Energy and Surface Pressure , 2008, 0807.1551.

[55]  Piyush Srivastava,et al.  The Ising Partition Function: Zeros and Deterministic Approximation , 2017 .

[56]  Ivona Bezáková,et al.  Inapproximability of the independent set polynomial in the complex plane , 2017, STOC.

[57]  Han Peters,et al.  On a conjecture of Sokal concerning roots of the independence polynomial , 2017, Michigan Mathematical Journal.

[58]  Joel L. Lebowitz,et al.  High-fugacity expansion and crystalline ordering for non-sliding hard-core lattice particle systems , 2017 .

[59]  Dana Randall,et al.  Phase Coexistence for the Hard-Core Model on ℤ2 , 2018, Combinatorics, Probability and Computing.

[60]  Viresh Patel,et al.  Computing the Number of Induced Copies of a Fixed Graph in a Bounded Degree Graph , 2018, Algorithmica.

[61]  Eric Vigoda,et al.  Danielštefankovič ‡ , 2022 .

[62]  Dana Randall,et al.  Slow mixing of glauber dynamics via topological obstructions , 2006, SODA '06.

[63]  Andreas Björklund,et al.  Computing the Tutte Polynomial in Vertex-Exponential Time , 2007, 2008 49th Annual IEEE Symposium on Foundations of Computer Science.

[64]  C. Borgs,et al.  A unified approach to phase diagrams in field theory and statistical mechanics , 1989 .