On the ill-conditioned nature of C∞ RBF strong collocation

[1]  Donald Ervin Knuth,et al.  The Art of Computer Programming , 1968 .

[2]  R. L. Hardy Multiquadric equations of topography and other irregular surfaces , 1971 .

[3]  R. Franke Scattered data interpolation: tests of some methods , 1982 .

[4]  W. Madych,et al.  Multivariate interpolation and condi-tionally positive definite functions , 1988 .

[5]  E. Kansa MULTIQUADRICS--A SCATTERED DATA APPROXIMATION SCHEME WITH APPLICATIONS TO COMPUTATIONAL FLUID-DYNAMICS-- II SOLUTIONS TO PARABOLIC, HYPERBOLIC AND ELLIPTIC PARTIAL DIFFERENTIAL EQUATIONS , 1990 .

[6]  E. Kansa Multiquadrics—A scattered data approximation scheme with applications to computational fluid-dynamics—I surface approximations and partial derivative estimates , 1990 .

[7]  W. R. Madych,et al.  Miscellaneous error bounds for multiquadric and related interpolators , 1992 .

[8]  Robert Schaback,et al.  Error estimates and condition numbers for radial basis function interpolation , 1995, Adv. Comput. Math..

[9]  M. D. Buhmann Multiquadric prewavelets on nonequally spaced knots in one dimension , 1995 .

[10]  Charles K. Chui,et al.  Analytic wavelets generated by radial functions , 1996, Adv. Comput. Math..

[11]  Barry F. Smith,et al.  Domain Decomposition: Parallel Multilevel Methods for Elliptic Partial Differential Equations , 1996 .

[12]  Leevan Ling,et al.  Preconditioning for radial basis functions with domain decomposition methods , 2004, Math. Comput. Model..

[13]  P. Langlois More accuracy at fixed precision , 2004 .

[14]  James Demmel,et al.  Error bounds from extra-precise iterative refinement , 2006, TOMS.

[15]  A. Cheng,et al.  Error estimate, optimal shape factor, and high precision computation of multiquadric collocation method , 2007 .

[16]  S. Sarra,et al.  Multiquadric Radial Basis Function Approximation Methods for the Numerical Solution of Partial Differential Equations , 2009 .

[18]  A. Cheng Multiquadric and its shape parameter—A numerical investigation of error estimate, condition number, and round-off error by arbitrary precision computation , 2012 .

[19]  Jürgen Geiser,et al.  Numerical solution to time-dependent 4D inviscid Burgers' equations , 2013 .

[20]  Lin-Tian Luh The mystery of the shape parameter III , 2010, 1004.0759.

[21]  Robert Schaback,et al.  $H^2$--Convergence of least-squares kernel collocation methods , 2018, 1801.00629.