On the ill-conditioned nature of C∞ RBF strong collocation
暂无分享,去创建一个
[1] Donald Ervin Knuth,et al. The Art of Computer Programming , 1968 .
[2] R. L. Hardy. Multiquadric equations of topography and other irregular surfaces , 1971 .
[3] R. Franke. Scattered data interpolation: tests of some methods , 1982 .
[4] W. Madych,et al. Multivariate interpolation and condi-tionally positive definite functions , 1988 .
[5] E. Kansa. MULTIQUADRICS--A SCATTERED DATA APPROXIMATION SCHEME WITH APPLICATIONS TO COMPUTATIONAL FLUID-DYNAMICS-- II SOLUTIONS TO PARABOLIC, HYPERBOLIC AND ELLIPTIC PARTIAL DIFFERENTIAL EQUATIONS , 1990 .
[6] E. Kansa. Multiquadrics—A scattered data approximation scheme with applications to computational fluid-dynamics—I surface approximations and partial derivative estimates , 1990 .
[7] W. R. Madych,et al. Miscellaneous error bounds for multiquadric and related interpolators , 1992 .
[8] Robert Schaback,et al. Error estimates and condition numbers for radial basis function interpolation , 1995, Adv. Comput. Math..
[9] M. D. Buhmann. Multiquadric prewavelets on nonequally spaced knots in one dimension , 1995 .
[10] Charles K. Chui,et al. Analytic wavelets generated by radial functions , 1996, Adv. Comput. Math..
[11] Barry F. Smith,et al. Domain Decomposition: Parallel Multilevel Methods for Elliptic Partial Differential Equations , 1996 .
[12] Leevan Ling,et al. Preconditioning for radial basis functions with domain decomposition methods , 2004, Math. Comput. Model..
[13] P. Langlois. More accuracy at fixed precision , 2004 .
[14] James Demmel,et al. Error bounds from extra-precise iterative refinement , 2006, TOMS.
[15] A. Cheng,et al. Error estimate, optimal shape factor, and high precision computation of multiquadric collocation method , 2007 .
[16] S. Sarra,et al. Multiquadric Radial Basis Function Approximation Methods for the Numerical Solution of Partial Differential Equations , 2009 .
[18] A. Cheng. Multiquadric and its shape parameter—A numerical investigation of error estimate, condition number, and round-off error by arbitrary precision computation , 2012 .
[19] Jürgen Geiser,et al. Numerical solution to time-dependent 4D inviscid Burgers' equations , 2013 .
[20] Lin-Tian Luh. The mystery of the shape parameter III , 2010, 1004.0759.
[21] Robert Schaback,et al. $H^2$--Convergence of least-squares kernel collocation methods , 2018, 1801.00629.