Subarcsecond international LOFAR radio images of the M82 nucleus at 118 MHz and 154 MHz

Context. The nuclear starburst in the nearby galaxy M82 provides an excellent laboratory for understanding the physics of star formation. This galaxy has been extensively observed in the past, revealing tens of radio-bright compact objects embedded in a di use free-free absorbing medium. Our understanding of the structure and physics of this medium in M82 can be greatly improved by high-resolution images at low frequencies where the e ects of free-free absorption are most prominent. Aims. The aims of this study are, firstly, to demonstrate imaging using international baselines of the Low Frequency Array (LOFAR), and secondly, to constrain low-frequency spectra of compact and di use emission in the central starburst region of M82 via highresolution radio imaging at low frequencies. Methods. The international LOFAR telescope was used to observe M82 at 110 126 MHz and 146 162 MHz. Images were obtained using standard techniques from very long baseline interferometry. images were obtained at each frequency range: one only using international baselines, and one only using the longest Dutch (remote) baselines. Results. The 154 MHz image obtained using international baselines is a new imaging record in terms of combined image resolution (0.3 00 ) and sensitivity ( = 0:15 mJy/beam) at low frequencies (<327 MHz). We detected 16 objects at 154 MHz, six of these also at 118 MHz. Seven objects detected at 154 MHz have not been catalogued previously. For the nine objects previously detected, we obtained spectral indices and emission measures by fitting models to spectra (combining LOFAR with literature data). Four weaker but resolved features are also found: a linear (50 pc) filament and three other resolved objects, of which two show a clear shell structure. We do not detect any emission from either supernova 2008iz or from the radio transient source 43.78+59.3. The images obtained using remote baselines show di use emission, associated with the outflow in M82, with reduced brightness in the region of the edge-on star-forming disk.

[1]  Stephanie Thalberg,et al.  Interferometry And Synthesis In Radio Astronomy , 2016 .

[2]  John McKean,et al.  The LOFAR long baseline snapshot calibrator survey , 2014, 1411.2743.

[3]  M. C. Toribio,et al.  DISCOVERY OF CARBON RADIO RECOMBINATION LINES IN M82 , 2014, Proceedings of the International Astronomical Union.

[4]  Z. Paragi,et al.  CONSTRAINTS ON THE PROGENITOR SYSTEM AND THE ENVIRONS OF SN 2014J FROM DEEP RADIO OBSERVATIONS , 2014, 1405.4702.

[5]  S. Velzen,et al.  The Very Large Array Low-frequency Sky Survey Redux (VLSSr) , 2014, 1404.0694.

[6]  R. Perley,et al.  THE DENSITY AND MASS OF UNSHOCKED EJECTA IN CASSIOPEIA A THROUGH LOW FREQUENCY RADIO ABSORPTION , 2014, 1403.0032.

[7]  R. J. Nijboer,et al.  LOFAR imaging capabilities and system sensitivity , 2013, 1308.4267.

[8]  B. Lacki Interpreting the low-frequency radio spectra of starburst galaxies: a pudding of Strömgren spheres , 2012, 1206.7100.

[9]  Andre Heck,et al.  Information Handling in Astronomy , 2012 .

[10]  T. Muxlow,et al.  Flux density variations of radio sources in M82 over the last three decades , 2012, 1209.6478.

[11]  M. Krause,et al.  M 82 – A radio continuum and polarisation study - I. Data reduction and cosmic ray propagation , 2012, 1209.5552.

[12]  A. Scaife,et al.  A broad-band flux scale for low-frequency radio telescopes , 2012, 1203.0977.

[13]  M. C. Toribio,et al.  LOFAR: The LOw-Frequency ARray , 2013, 1305.3550.

[14]  E. Ros,et al.  Detection of jet precession in the active nucleus of M 81 , 2011, 1107.0704.

[15]  T. Cornwell,et al.  A multi-scale multi-frequency deconvolution algorithm for synthesis imaging in radio interferometry , 2011, 1106.2745.

[16]  E. Ros,et al.  Radio emission of SN1993J. The complete picture: II. Simultaneous fit of expansion and radio light curves , 2010, 1007.1224.

[17]  T. Muxlow,et al.  Wide-field Global VLBI and MERLIN combined monitoring of supernova remnants in M82 , 2010, 1006.1504.

[18]  Bonn,et al.  Discovery of an unusual new radio source in the star-forming galaxy M82: faint supernova, supermassive black hole or an extragalactic microquasar? , 2010, 1003.0994.

[19]  H. F. Astrophysics,et al.  Discovery of a bright radio transient in M 82: a new radio supernova? , 2009, 0904.2388.

[20]  H. Courtois,et al.  THE EXTRAGALACTIC DISTANCE DATABASE , 2009, 0902.3668.

[21]  Gemini-S,et al.  THE OPTICAL STRUCTURE OF THE STARBURST GALAXY M82. I. DYNAMICS OF THE DISK AND INNER-WIND , 2009, 0902.0064.

[22]  Memo 113 LOFAR imaging capabilities and system sensitivity , 2009 .

[23]  T. W. B. Muxlow,et al.  Deep MERLIN 5 GHz radio imaging of supernova remnants in the M82 starburst , 2008, 0810.0424.

[24]  W. Cotton,et al.  A Wide-Area VLA Continuum Survey near the Galactic Center at 6 and 20 cm Wavelengths , 2008, 0803.1412.

[25]  J. Anderson,et al.  A Deep, High-Resolution Survey of the Low-Frequency Radio Sky , 2007, 0710.1946.

[26]  Carlos E. C. J. Gabriel,et al.  Astronomical Data Analysis Software and Systems Xv , 2022 .

[27]  R. Perley,et al.  The VLA Low-Frequency Sky Survey , 2005, 0706.1191.

[28]  M. Rupen,et al.  The Location of the Core in M81 , 2004, astro-ph/0407619.

[29]  Eric W. Greisen,et al.  AIPS, the VLA, and the VLBA , 2003 .

[30]  Marcos J. Montes,et al.  Radio emission from supernovae and gamma-ray bursters , 2002 .

[31]  Andre Heck,et al.  Information Handling in Astronomy - Historical Vistas , 2002 .

[32]  P. Kronberg,et al.  Radio Spectra of Selected Compact Sources in the Nucleus of M82 , 1998, astro-ph/9803322.

[33]  P. Wilkinson,et al.  LOW-FREQUENCY OBSERVATIONS OF SUPERNOVA REMNANTS IN M82 , 1997 .

[34]  A. Readhead,et al.  The First Caltech-Jodrell Bank VLBI Survey. III. VLBI and MERLIN Observations at 5 GHz and VLA Observations at 1.4 GHz , 1995 .

[35]  James J. Condon,et al.  Radio Emission from Normal Galaxies , 1992 .

[36]  T. Thuan,et al.  Compact starbursts in ultraluminous infrared galaxies , 1991 .

[37]  F. Israel,et al.  Low-Frequency Radio Continuum Evidence for Cool Ionized Gas in Normal Spiral Galaxies , 1990 .

[38]  Timothy J. Cornwell,et al.  Multi-frequency synthesis : a new technique in radio interferometric imaging , 1990 .

[39]  N. Kassim Low-Frequency Observations of Galactic Supernova Remnants and the Distribution of Low-Density Ionized Gas in the Interstellar Medium , 1989 .

[40]  T. W. B. Muxlow,et al.  151-MHz and 1.5-GHz observations of bridges in powerful extragalactic radio sources , 1989 .

[41]  L. I. Matveyenko,et al.  VLBI observations of the nuclei of a mixed sample of bright galaxies and quasars at 327 MHz , 1989 .

[42]  K. Weiler,et al.  Supernovae and Supernova Remnants , 1988 .

[43]  M. Morris,et al.  The linear filaments of the radio arc near the Galactic center , 1987 .

[44]  R. Simon,et al.  92 Centimeter VLBI Structure of the Elliptical Galaxy MCG 5-4-18 , 1986 .

[45]  P. Wilkinson,et al.  Young Supernovae in the Starburst Galaxy M82 , 1984 .

[46]  R. Chevalier The radio and X-ray emission from type II supernovae. , 1982 .

[47]  R. Chevalier Self-similar solutions for the interaction of stellar ejecta with an external medium. , 1982 .

[48]  G. Resch,et al.  Meter-wavelength VLBI. II - The observations , 1975 .

[49]  S. Bergh,et al.  NUCLEUS OF M82. , 1972 .

[50]  M. P. Paul,et al.  Very Long Baseline Interferometry of Jupiter at 18 MHz , 1970 .