A new approach for subset 2-D AR model identification for describing textures

This paper addresses the problem of identification of appropriate autoregressive (AR) components to describe textural regions of digital images by a general class of two-dimensional (2-D) AR models. In analogy with univariate time series, the proposed technique first selects a neighborhood set of 2-D lag variables corresponding to the significant multiple partial auto-correlation coefficients. A matrix is then suitably formed from these 2-D lag variables. Using singular value decomposition (SVD) and orthonormal with column pivoting factorization (QRcp) techniques, the prime information of this matrix corresponding to different pseudoranks is obtained. Schwarz's (1978) information criterion (SIG) is then used to obtain the optimum set of 2-D lag variables, which are the appropriate autoregressive components of the model for a given textural image. A four-class texture classification scheme is illustrated with such models and a comparison of the technique with the work of Chellappa and Chatterjee (1985) is provided.

[1]  James W. Modestino,et al.  A Maximum Likelihood Approach to Texture Classification , 1982, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[2]  Rangasami L. Kashyap,et al.  Characterization and estimation of two-dimensional ARMA models , 1984, IEEE Trans. Inf. Theory.

[3]  Hirotugu Akaike,et al.  On entropy maximization principle , 1977 .

[4]  G. Schwarz Estimating the Dimension of a Model , 1978 .

[5]  R. Kashyap Univariate and multivariate random field models for images , 1980 .

[6]  Robert M. Haralick,et al.  Textural Features for Image Classification , 1973, IEEE Trans. Syst. Man Cybern..

[7]  Donald Geman,et al.  Stochastic Relaxation, Gibbs Distributions, and the Bayesian Restoration of Images , 1984, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[8]  Rangasami L. Kashyap,et al.  Synthesis and Estimation of Random Fields Using Long-Correlation Models , 1984, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[9]  Phil Brodatz,et al.  Textures: A Photographic Album for Artists and Designers , 1966 .

[10]  Henri Maitre,et al.  Application of autoregressive models to fine arts painting analysis , 1987 .

[11]  Martin G. Bello,et al.  A combined Markov random field and wave-packet transform-based approach for image segmentation , 1994, IEEE Trans. Image Process..

[12]  Anjan Sarkar,et al.  An identification approach for 2-D autoregressive models in describing textures , 1991, CVGIP Graph. Model. Image Process..

[13]  M. Hassner,et al.  The use of Markov Random Fields as models of texture , 1980 .

[14]  James W. Modestino,et al.  Construction and properties of a useful two-dimensional random field , 1980, IEEE Trans. Inf. Theory.

[15]  Ibrahim M. Elfadel,et al.  Gibbs Random Fields, Cooccurrences, and Texture Modeling , 1994, IEEE Trans. Pattern Anal. Mach. Intell..

[16]  David B. Cooper,et al.  Bayesian Clustering for Unsupervised Estimation of Surface and Texture Models , 1988, IEEE Trans. Pattern Anal. Mach. Intell..

[17]  Dong-Chen He,et al.  Texture discrimination based on an optimal utilization of texture features , 1988, Pattern Recognit..

[18]  Richard W. Conners,et al.  Toward a Structural Textural Analyzer Based on Statistical Methods , 1980 .

[19]  Alex Pentland,et al.  Fractal-Based Description of Natural Scenes , 1984, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[20]  Gene H. Golub,et al.  Matrix computations , 1983 .

[21]  Victor Solo,et al.  Modeling of two-dimensional random fields by parametric cepstrum , 1986, IEEE Trans. Inf. Theory.

[22]  Mohan M. Trivedi,et al.  Object detection based on gray level cooccurrence , 1984, Comput. Vis. Graph. Image Process..

[23]  Laveen N. Kanal,et al.  Markov mesh models , 1980 .

[24]  Gwilym M. Jenkins,et al.  Time series analysis, forecasting and control , 1972 .

[25]  Mary M. Galloway,et al.  Texture analysis using gray level run lengths , 1974 .

[26]  James M. Keller,et al.  Texture description and segmentation through fractal geometry , 1989, Comput. Vis. Graph. Image Process..

[27]  Nirupam Sarkar,et al.  Improved fractal geometry based texture segmentation technique , 1993 .

[28]  Rama Chellappa,et al.  Texture synthesis using 2-D noncausal autoregressive models , 1985, IEEE Trans. Acoust. Speech Signal Process..

[29]  Calyampudi R. Rao,et al.  Linear Statistical Inference and Its Applications. , 1975 .

[30]  M. Kendall,et al.  An Introduction to the Theory of Statistics. , 1911 .

[31]  R.M. Haralick,et al.  Statistical and structural approaches to texture , 1979, Proceedings of the IEEE.

[32]  Rama Chellappa,et al.  Texture synthesis and compression using Gaussian-Markov random field models , 1985, IEEE Transactions on Systems, Man, and Cybernetics.

[33]  George E. P. Box,et al.  Time Series Analysis: Forecasting and Control , 1977 .

[34]  Ramalingam Chellappa,et al.  Decision rules for choice of neighbors in random field models of images , 1981 .

[35]  Haluk Derin,et al.  Modeling and Segmentation of Noisy and Textured Images Using Gibbs Random Fields , 1987, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[36]  H. Derin,et al.  Segmentation of textured images using Gibbs random fields , 1986 .

[37]  King-Sun Fu,et al.  A syntactic approach to texture analysis , 1978 .

[38]  Mohan M. Trivedi,et al.  Segmentation of a high-resolution urban scene using texture operators , 1984, Comput. Vis. Graph. Image Process..

[39]  Rama Chellappa,et al.  Classification of textures using Gaussian Markov random fields , 1985, IEEE Trans. Acoust. Speech Signal Process..

[40]  Luc Van Gool,et al.  Texture analysis Anno 1983 , 1985, Comput. Vis. Graph. Image Process..

[41]  Peter de Souza,et al.  Texture recognition via autoregression , 1982, Pattern Recognit..

[42]  S. Zucker,et al.  Finding structure in Co-occurrence matrices for texture analysis , 1980 .

[43]  Larry S. Davis,et al.  Polarograms: A new tool for image texture analysis , 1979, Pattern Recognit..

[44]  Richard O. Duda,et al.  Pattern classification and scene analysis , 1974, A Wiley-Interscience publication.

[45]  Rama Chellappa,et al.  Estimation and choice of neighbors in spatial-interaction models of images , 1983, IEEE Trans. Inf. Theory.

[46]  S. Zucker Toward a model of texture , 1976 .

[47]  C. R. Rao,et al.  Linear Statistical Inference and its Applications , 1968 .

[48]  F. R. Hansen,et al.  Image segmentation using simple markov field models , 1982, Computer Graphics and Image Processing.