T-cell recognition of HLA-DQ2-bound gluten peptides can be influenced by an N-terminal proline at p-1

[1]  E. Bergseng,et al.  Structural basis for HLA-DQ2-mediated presentation of gluten epitopes in celiac disease , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[2]  F. Koning,et al.  The HLA-DQ2 gene dose effect in celiac disease is directly related to the magnitude and breadth of gluten-specific T cell responses , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[3]  N. L. La Gruta,et al.  The Majority of Immunogenic Epitopes Generate CD4+ T Cells That Are Dependent on MHC Class II-Bound Peptide-Flanking Residues , 2002, The Journal of Immunology.

[4]  P. Roepstorff,et al.  Celiac lesion T cells recognize epitopes that cluster in regions of gliadins rich in proline residues. , 2002, Gastroenterology.

[5]  J. Drijfhout,et al.  The gluten response in children with celiac disease is directed toward multiple gliadin and glutenin peptides. , 2002, Gastroenterology.

[6]  Christopher Garcia,et al.  Faculty Opinions recommendation of Structure of a complex of the human alpha/beta T cell receptor (TCR) HA1.7, influenza hemagglutinin peptide, and major histocompatibility complex class II molecule, HLA-DR4 (DRA*0101 and DRB1*0401): insight into TCR cross-restriction and alloreactivity. , 2002 .

[7]  J. Drijfhout,et al.  Specificity of Tissue Transglutaminase Explains Cereal Toxicity in Celiac Disease , 2002, The Journal of experimental medicine.

[8]  Andrew W. Liu,et al.  Mutational analysis of critical residues determining antigen presentation and activation of HLA-DQ0602 restricted T-cell clones. , 2002, Human immunology.

[9]  J. Gorski,et al.  C-Terminal Anchoring of a Peptide to Class II MHC Via the P10 Residue Is Compatible with a Peptide Bulge1 , 2002, The Journal of Immunology.

[10]  Ian A Wilson,et al.  The specificity of TCR/pMHC interaction. , 2002, Current opinion in immunology.

[11]  K. Lundin,et al.  T cells from celiac disease lesions recognize gliadin epitopes deamidated in situ by endogenous tissue transglutaminase , 2001, European journal of immunology.

[12]  D. Wiley,et al.  Structure of a covalently stabilized complex of a human αβ T‐cell receptor, influenza HA peptide and MHC class II molecule, HLA‐DR1 , 2000, The EMBO journal.

[13]  P. van Endert,et al.  Structural analysis of two HLA-DR-presented autoantigenic epitopes: crucial role of peripheral but not central peptide residues for T-cell receptor recognition. , 2000, Molecular immunology.

[14]  P. Roepstorff,et al.  The Intestinal T Cell Response to α-Gliadin in Adult Celiac Disease Is Focused on a Single Deamidated Glutamine Targeted by Tissue Transglutaminase , 2000, The Journal of experimental medicine.

[15]  F. Koning,et al.  Small intestinal T cells of celiac disease patients recognize a natural pepsin fragment of gliadin. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[16]  F. Koning,et al.  Selective deamidation by tissue transglutaminase strongly enhances gliadin-specific T cell reactivity. , 1998, Journal of immunology.

[17]  L. Fugger,et al.  Tissue transglutaminase selectively modifies gliadin peptides that are recognized by gut-derived T cells in celiac disease , 1998, Nature Medicine.

[18]  E. Sercarz,et al.  Modulation of the immunogenicity of antigenic determinants by their flanking residues. , 1998, Immunology today.

[19]  W. Kwok,et al.  Preferential presentation of herpes simplex virus T-cell antigen by HLA DQA1*0501/DQB1*0201 in comparison to HLA DQA1*0201/DQB1*0201. , 1997, Human immunology.

[20]  H. Rammensee,et al.  The peptide binding motif of the disease associated HLA‐DQ (α 1* 0501, β 1* 0201) molecule , 1996 .

[21]  D. Wiley,et al.  Crystallographic analysis of endogenous peptides associated with HLA-DR1 suggests a common, polyproline II-like conformation for bound peptides. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[22]  E. Thorsby,et al.  Evidence for a primary association of celiac disease to a particular HLA-DQ alpha/beta heterodimer , 1989, The Journal of experimental medicine.

[23]  H. Wieser,et al.  Comparative investigations of partial amino acid sequences of prolamins and glutelins from cereals , 1988, Zeitschrift fur Lebensmittel-Untersuchung und -Forschung.

[24]  H. Wieser,et al.  [Comparative investigations of partial amino acid sequences of prolamines and glutelins from cereals. II. Fractionation of glutelins (author's transl)]. , 1980, Zeitschrift fur Lebensmittel-Untersuchung und -Forschung.

[25]  F. Koning,et al.  Peptide binding characteristics of the coeliac disease-associated DQ(α1*0501, β1*0201) molecule , 2007, Immunogenetics.

[26]  F. Koning,et al.  Unique peptide binding characteristics of the disease-associated DQ(alpha 1*0501, beta 1*0201) vs the non-disease-associated DQ(alpha 1*0201, beta 1*0202) molecule. , 1997, Immunogenetics.

[27]  J. Drijfhout,et al.  Unique peptide binding characteristics of the disease-associated DQ(α1*0501, β1*0201) vs the non-disease-associated DQ(α1*0201, β1*0202) molecule , 1997, Immunogenetics.

[28]  J. Drijfhout,et al.  Peptide binding characteristics of the coeliac disease-associated DQ(alpha1*0501, beta1*0201) molecule. , 1996, Immunogenetics.

[29]  H. Rammensee,et al.  The peptide binding motif of the disease associated HLA-DQ (alpha 1* 0501, beta 1* 0201) molecule. , 1996, European journal of immunology.