Using a Conic Bundle Method to Accelerate Both Phases of a Quadratic Convex Reformulation

We present algorithm MIQCR-CB that is an advancement of MIQCR. MIQCR is a method for solving mixed-integer quadratic programs and works in two phases: the first phase determines an equivalent quadratic formulation with a convex objective function by solving a semidefinite problem (SDP); in the second phase, the equivalent formulation is solved by a standard solver. Because the reformulation relies on the solution of a large-scale semidefinite program, it is not tractable by existing semidefinite solvers even for medium-sized problems. To surmount this difficulty, we present in MIQCR-CB a subgradient algorithm within a Lagrangian duality framework for solving (SDP) that substantially speeds up the first phase. Moreover, this algorithm leads to a reformulated problem of smaller size than the one obtained by the original MIQCR method, which results in a shorter time for solving the second phase. We present extensive computational results to show the efficiency of our algorithm. First, we apply MIQCR-CB to th...

[1]  Jos F. Sturm,et al.  A Matlab toolbox for optimization over symmetric cones , 1999 .

[2]  Alain Billionnet,et al.  A column generation based method for robust railway rolling-stock planning , 2013 .

[3]  Edward M. B. Smith,et al.  On the optimal design of continuous processes , 1996 .

[4]  Hisao Tamaki,et al.  Greedily Finding a Dense Subgraph , 2000, J. Algorithms.

[5]  Alain Billionnet,et al.  Quadratic 0-1 programming: Tightening linear or quadratic convex reformulation by use of relaxations , 2008, RAIRO Oper. Res..

[6]  Gerold Jäger,et al.  Improved Approximation Algorithms for Maximum Graph Partitioning Problems , 2005, J. Comb. Optim..

[7]  A. Lambert,et al.  Résolution de programmes quadratiques en nombres entiers , 2009 .

[8]  Alain Billionnet,et al.  Best reduction of the quadratic semi-assignment problem , 2001, Discret. Appl. Math..

[9]  Garth P. McCormick,et al.  Computability of global solutions to factorable nonconvex programs: Part I — Convex underestimating problems , 1976, Math. Program..

[10]  Edward M. B. Smith,et al.  A symbolic reformulation/spatial branch-and-bound algorithm for the global optimisation of nonconvex MINLPs , 1999 .

[11]  Nikolaos V. Sahinidis,et al.  Global optimization of mixed-integer nonlinear programs: A theoretical and computational study , 2004, Math. Program..

[12]  Kim-Chuan Toh,et al.  A Newton-CG Augmented Lagrangian Method for Semidefinite Programming , 2010, SIAM J. Optim..

[13]  Alain Billionnet,et al.  A solution method for quadratically constrained integer problems , 2011 .

[14]  David Pisinger,et al.  Upper bounds and exact algorithms for p-dispersion problems , 2006, Comput. Oper. Res..

[15]  E. Erkut The discrete p-dispersion problem , 1990 .

[16]  Franz Rendl,et al.  Computational experience with a bundle approach for semidefinite cutting plane relaxations of Max-Cut and Equipartition , 2006, Math. Program..

[17]  M. Plateau Reformulations quadratiques convexes pour la programmation quadratique en variables 0-1 , 2006 .

[18]  Alain Billionnet,et al.  Exact quadratic convex reformulations of mixed-integer quadratically constrained problems , 2015, Mathematical Programming.

[19]  Alain Billionnet,et al.  Convex reformulations of mixed-integer quadratically constrained programs , 2013 .

[20]  Alain Billionnet,et al.  Different Formulations for Solving the Heaviest K-Subgraph Problem , 2005 .

[21]  Refael Hassin,et al.  Approximation algorithms for maximum dispersion , 1997, Oper. Res. Lett..

[22]  Alain Billionnet,et al.  Extending the QCR method to general mixed-integer programs , 2010, Mathematical Programming.

[23]  Alain Billionnet,et al.  Improving the performance of standard solvers for quadratic 0-1 programs by a tight convex reformulation: The QCR method , 2009, Discret. Appl. Math..

[24]  Pierre Hansen,et al.  A branch and cut algorithm for nonconvex quadratically constrained quadratic programming , 1997, Math. Program..

[25]  A. Billionnet,et al.  Eigenvalue Methods for Linearly Constrained Quadratic 0-1 Problems with Application to the Densest k-Subgraph Problem , 2005 .

[26]  Sourour Elloumi,et al.  Optimisation et simulation pour la planification robuste des roulements d'engins en milieu ferroviaire , 2013 .

[27]  Sourour Elloumi,et al.  Formulation et résolution d'un problème de p-Centre tolérant aux pannes , 2002 .

[28]  Christodoulos A. Floudas,et al.  Deterministic Global Optimization , 1990 .

[29]  William W. Hager,et al.  Graph Partitioning and Continuous Quadratic Programming , 1999, SIAM J. Discret. Math..

[30]  Franz Rendl,et al.  Regularization Methods for Semidefinite Programming , 2009, SIAM J. Optim..

[31]  Sourour Elloumi,et al.  Quadratic convex reformulation for graph partitionning problems , 2013 .

[32]  Frédéric Roupin,et al.  Computational results of a semidefinite branch-and-bound algorithm for k-cluster , 2016, Comput. Oper. Res..

[33]  Frédéric Roupin,et al.  Improved semidefinite branch-and-bound algorithm for k-cluster , 2012 .

[34]  Franz Rendl,et al.  A Spectral Bundle Method for Semidefinite Programming , 1999, SIAM J. Optim..

[35]  Masakazu Kojima,et al.  SDPA (SemiDefinite Programming Algorithm) , 1999 .

[36]  Nikolaos V. Sahinidis,et al.  Convexification and Global Optimization in Continuous and Mixed-Integer Nonlinear Programming , 2002 .

[37]  Yehoshua Perl,et al.  Clustering and domination in perfect graphs , 1984, Discret. Appl. Math..

[38]  Alain Billionnet,et al.  Convex reformulations for integer quadratic programs , 2009 .

[39]  Claudia A. Sagastizábal,et al.  Dynamic bundle methods , 2009, Math. Program..

[40]  Jérôme Malick,et al.  The spherical constraint in Boolean quadratic programs , 2007, J. Glob. Optim..

[41]  Gérard Cornuéjols,et al.  An algorithmic framework for convex mixed integer nonlinear programs , 2008, Discret. Optim..

[42]  N. Maculan,et al.  Global optimization : from theory to implementation , 2006 .

[43]  Alain Billionnet,et al.  A new Branch and Bound algorithm for MIQPs , 2012 .

[44]  B. Borchers CSDP, A C library for semidefinite programming , 1999 .

[45]  Anand Srivastav,et al.  Finding Dense Subgraphs with Semidefinite Programming , 1998, APPROX.

[46]  Renato D. C. Monteiro,et al.  Digital Object Identifier (DOI) 10.1007/s10107-004-0564-1 , 2004 .

[47]  Renato D. C. Monteiro,et al.  A nonlinear programming algorithm for solving semidefinite programs via low-rank factorization , 2003, Math. Program..

[48]  Guy Kortsarz,et al.  On choosing a dense subgraph , 1993, Proceedings of 1993 IEEE 34th Annual Foundations of Computer Science.

[49]  Robert J. Vanderbei,et al.  An Interior-Point Method for Semidefinite Programming , 1996, SIAM J. Optim..

[50]  Alain Billionnet,et al.  Convex Quadratic Programming for Exact Solution of 0-1 Quadratic Programs , 2005 .

[51]  Jiawei Zhang,et al.  An improved rounding method and semidefinite programming relaxation for graph partition , 2002, Math. Program..

[52]  Alain Billionnet,et al.  Planification robuste du matériel roulant ferroviaire , 2012 .

[53]  Frédéric Roupin,et al.  Solving \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k$$\end{document}-cluster problems to optimality with semidefi , 2012, Mathematical Programming.

[54]  Sourour Elloumi A unified view of linear and quadratic convex reformulations for binary quadratic programming , 2012 .

[55]  Frank Plastria,et al.  Discrete location problems with push-pull objectives , 2002, Discret. Appl. Math..

[56]  Sourour Elloumi Nouvelles inégalités valides pour l'affectation quadratique généralisée , 2008 .

[57]  Alain Billionnet,et al.  Global solution of mixed-integer quadratic programs through quadratic convex reformulation , 2013 .

[58]  Franz Rendl,et al.  An Augmented Primal-Dual Method for Linear Conic Programs , 2008, SIAM J. Optim..

[59]  Sourour Elloumi,et al.  Optimization of wireless sensor networks deployment with coverage and connectivity constraints , 2017, Annals of Operations Research.

[60]  Leo Liberti,et al.  Branching and bounds tighteningtechniques for non-convex MINLP , 2009, Optim. Methods Softw..

[61]  Kurt M. Anstreicher,et al.  Institute for Mathematical Physics Semidefinite Programming versus the Reformulation–linearization Technique for Nonconvex Quadratically Constrained Quadratic Programming Semidefinite Programming versus the Reformulation-linearization Technique for Nonconvex Quadratically Constrained , 2022 .

[62]  A. Billionnet,et al.  Extending the QCR method to the case of general mixed integer programs , 2012 .

[63]  Nikolaos V. Sahinidis,et al.  A polyhedral branch-and-cut approach to global optimization , 2005, Math. Program..

[64]  Edward M. B. Smith,et al.  Global optimisation of nonconvex MINLPs , 1997 .

[65]  Frédéric Roupin,et al.  From Linear to Semidefinite Programming: An Algorithm to Obtain Semidefinite Relaxations for Bivalent Quadratic Problems , 2004, J. Comb. Optim..