Using a Conic Bundle Method to Accelerate Both Phases of a Quadratic Convex Reformulation
暂无分享,去创建一个
[1] Jos F. Sturm,et al. A Matlab toolbox for optimization over symmetric cones , 1999 .
[2] Alain Billionnet,et al. A column generation based method for robust railway rolling-stock planning , 2013 .
[3] Edward M. B. Smith,et al. On the optimal design of continuous processes , 1996 .
[4] Hisao Tamaki,et al. Greedily Finding a Dense Subgraph , 2000, J. Algorithms.
[5] Alain Billionnet,et al. Quadratic 0-1 programming: Tightening linear or quadratic convex reformulation by use of relaxations , 2008, RAIRO Oper. Res..
[6] Gerold Jäger,et al. Improved Approximation Algorithms for Maximum Graph Partitioning Problems , 2005, J. Comb. Optim..
[7] A. Lambert,et al. Résolution de programmes quadratiques en nombres entiers , 2009 .
[8] Alain Billionnet,et al. Best reduction of the quadratic semi-assignment problem , 2001, Discret. Appl. Math..
[9] Garth P. McCormick,et al. Computability of global solutions to factorable nonconvex programs: Part I — Convex underestimating problems , 1976, Math. Program..
[10] Edward M. B. Smith,et al. A symbolic reformulation/spatial branch-and-bound algorithm for the global optimisation of nonconvex MINLPs , 1999 .
[11] Nikolaos V. Sahinidis,et al. Global optimization of mixed-integer nonlinear programs: A theoretical and computational study , 2004, Math. Program..
[12] Kim-Chuan Toh,et al. A Newton-CG Augmented Lagrangian Method for Semidefinite Programming , 2010, SIAM J. Optim..
[13] Alain Billionnet,et al. A solution method for quadratically constrained integer problems , 2011 .
[14] David Pisinger,et al. Upper bounds and exact algorithms for p-dispersion problems , 2006, Comput. Oper. Res..
[15] E. Erkut. The discrete p-dispersion problem , 1990 .
[16] Franz Rendl,et al. Computational experience with a bundle approach for semidefinite cutting plane relaxations of Max-Cut and Equipartition , 2006, Math. Program..
[17] M. Plateau. Reformulations quadratiques convexes pour la programmation quadratique en variables 0-1 , 2006 .
[18] Alain Billionnet,et al. Exact quadratic convex reformulations of mixed-integer quadratically constrained problems , 2015, Mathematical Programming.
[19] Alain Billionnet,et al. Convex reformulations of mixed-integer quadratically constrained programs , 2013 .
[20] Alain Billionnet,et al. Different Formulations for Solving the Heaviest K-Subgraph Problem , 2005 .
[21] Refael Hassin,et al. Approximation algorithms for maximum dispersion , 1997, Oper. Res. Lett..
[22] Alain Billionnet,et al. Extending the QCR method to general mixed-integer programs , 2010, Mathematical Programming.
[23] Alain Billionnet,et al. Improving the performance of standard solvers for quadratic 0-1 programs by a tight convex reformulation: The QCR method , 2009, Discret. Appl. Math..
[24] Pierre Hansen,et al. A branch and cut algorithm for nonconvex quadratically constrained quadratic programming , 1997, Math. Program..
[25] A. Billionnet,et al. Eigenvalue Methods for Linearly Constrained Quadratic 0-1 Problems with Application to the Densest k-Subgraph Problem , 2005 .
[26] Sourour Elloumi,et al. Optimisation et simulation pour la planification robuste des roulements d'engins en milieu ferroviaire , 2013 .
[27] Sourour Elloumi,et al. Formulation et résolution d'un problème de p-Centre tolérant aux pannes , 2002 .
[28] Christodoulos A. Floudas,et al. Deterministic Global Optimization , 1990 .
[29] William W. Hager,et al. Graph Partitioning and Continuous Quadratic Programming , 1999, SIAM J. Discret. Math..
[30] Franz Rendl,et al. Regularization Methods for Semidefinite Programming , 2009, SIAM J. Optim..
[31] Sourour Elloumi,et al. Quadratic convex reformulation for graph partitionning problems , 2013 .
[32] Frédéric Roupin,et al. Computational results of a semidefinite branch-and-bound algorithm for k-cluster , 2016, Comput. Oper. Res..
[33] Frédéric Roupin,et al. Improved semidefinite branch-and-bound algorithm for k-cluster , 2012 .
[34] Franz Rendl,et al. A Spectral Bundle Method for Semidefinite Programming , 1999, SIAM J. Optim..
[35] Masakazu Kojima,et al. SDPA (SemiDefinite Programming Algorithm) , 1999 .
[36] Nikolaos V. Sahinidis,et al. Convexification and Global Optimization in Continuous and Mixed-Integer Nonlinear Programming , 2002 .
[37] Yehoshua Perl,et al. Clustering and domination in perfect graphs , 1984, Discret. Appl. Math..
[38] Alain Billionnet,et al. Convex reformulations for integer quadratic programs , 2009 .
[39] Claudia A. Sagastizábal,et al. Dynamic bundle methods , 2009, Math. Program..
[40] Jérôme Malick,et al. The spherical constraint in Boolean quadratic programs , 2007, J. Glob. Optim..
[41] Gérard Cornuéjols,et al. An algorithmic framework for convex mixed integer nonlinear programs , 2008, Discret. Optim..
[42] N. Maculan,et al. Global optimization : from theory to implementation , 2006 .
[43] Alain Billionnet,et al. A new Branch and Bound algorithm for MIQPs , 2012 .
[44] B. Borchers. CSDP, A C library for semidefinite programming , 1999 .
[45] Anand Srivastav,et al. Finding Dense Subgraphs with Semidefinite Programming , 1998, APPROX.
[46] Renato D. C. Monteiro,et al. Digital Object Identifier (DOI) 10.1007/s10107-004-0564-1 , 2004 .
[47] Renato D. C. Monteiro,et al. A nonlinear programming algorithm for solving semidefinite programs via low-rank factorization , 2003, Math. Program..
[48] Guy Kortsarz,et al. On choosing a dense subgraph , 1993, Proceedings of 1993 IEEE 34th Annual Foundations of Computer Science.
[49] Robert J. Vanderbei,et al. An Interior-Point Method for Semidefinite Programming , 1996, SIAM J. Optim..
[50] Alain Billionnet,et al. Convex Quadratic Programming for Exact Solution of 0-1 Quadratic Programs , 2005 .
[51] Jiawei Zhang,et al. An improved rounding method and semidefinite programming relaxation for graph partition , 2002, Math. Program..
[52] Alain Billionnet,et al. Planification robuste du matériel roulant ferroviaire , 2012 .
[53] Frédéric Roupin,et al. Solving \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k$$\end{document}-cluster problems to optimality with semidefi , 2012, Mathematical Programming.
[54] Sourour Elloumi. A unified view of linear and quadratic convex reformulations for binary quadratic programming , 2012 .
[55] Frank Plastria,et al. Discrete location problems with push-pull objectives , 2002, Discret. Appl. Math..
[56] Sourour Elloumi. Nouvelles inégalités valides pour l'affectation quadratique généralisée , 2008 .
[57] Alain Billionnet,et al. Global solution of mixed-integer quadratic programs through quadratic convex reformulation , 2013 .
[58] Franz Rendl,et al. An Augmented Primal-Dual Method for Linear Conic Programs , 2008, SIAM J. Optim..
[59] Sourour Elloumi,et al. Optimization of wireless sensor networks deployment with coverage and connectivity constraints , 2017, Annals of Operations Research.
[60] Leo Liberti,et al. Branching and bounds tighteningtechniques for non-convex MINLP , 2009, Optim. Methods Softw..
[61] Kurt M. Anstreicher,et al. Institute for Mathematical Physics Semidefinite Programming versus the Reformulation–linearization Technique for Nonconvex Quadratically Constrained Quadratic Programming Semidefinite Programming versus the Reformulation-linearization Technique for Nonconvex Quadratically Constrained , 2022 .
[62] A. Billionnet,et al. Extending the QCR method to the case of general mixed integer programs , 2012 .
[63] Nikolaos V. Sahinidis,et al. A polyhedral branch-and-cut approach to global optimization , 2005, Math. Program..
[64] Edward M. B. Smith,et al. Global optimisation of nonconvex MINLPs , 1997 .
[65] Frédéric Roupin,et al. From Linear to Semidefinite Programming: An Algorithm to Obtain Semidefinite Relaxations for Bivalent Quadratic Problems , 2004, J. Comb. Optim..