Enhancing the robustness of a speciation-based PSO

Speciation encourages an evolutionary algorithm to locate multiple solutions in multimodal environments. Speciation algorithms often require a user to specify a parameter to define the species radius, which can be a major drawback since this knowledge may not be available a priori. This paper proposes a technique using a time-based convergence measure to overcome this problem. The proposed method is used to enhance the performance of a speciation-based PSO (SPSO) and has been shown to be robust over a wide range of values for this user-specified parameter.

[1]  P. John Clarkson,et al.  A Species Conserving Genetic Algorithm for Multimodal Function Optimization , 2002, Evolutionary Computation.

[2]  P. John Clarkson,et al.  Erratum: A Species Conserving Genetic Algorithm for Multimodal Function Optimization , 2003, Evolutionary Computation.

[3]  Xiaodong Li,et al.  A particle swarm model for tracking multiple peaks in a dynamic environment using speciation , 2004, Proceedings of the 2004 Congress on Evolutionary Computation (IEEE Cat. No.04TH8753).

[4]  Kalyanmoy Deb,et al.  An Investigation of Niche and Species Formation in Genetic Function Optimization , 1989, ICGA.

[5]  Samir W. Mahfoud Crowding and Preselection Revisited , 1992, PPSN.

[6]  Alain Pétrowski,et al.  A clearing procedure as a niching method for genetic algorithms , 1996, Proceedings of IEEE International Conference on Evolutionary Computation.

[7]  David E. Goldberg,et al.  Genetic Algorithms with Sharing for Multimodalfunction Optimization , 1987, ICGA.

[8]  Ralph R. Martin,et al.  A Sequential Niche Technique for Multimodal Function Optimization , 1993, Evolutionary Computation.

[9]  Georges R. Harik,et al.  Finding Multimodal Solutions Using Restricted Tournament Selection , 1995, ICGA.

[10]  J. Kennedy,et al.  Stereotyping: improving particle swarm performance with cluster analysis , 2000, Proceedings of the 2000 Congress on Evolutionary Computation. CEC00 (Cat. No.00TH8512).

[11]  Xiaodong Li,et al.  Adaptively Choosing Neighbourhood Bests Using Species in a Particle Swarm Optimizer for Multimodal Function Optimization , 2004, GECCO.

[12]  K. Dejong,et al.  An analysis of the behavior of a class of genetic adaptive systems , 1975 .

[13]  Zbigniew Michalewicz,et al.  Genetic Algorithms + Data Structures = Evolution Programs , 1992, Artificial Intelligence.

[14]  Frans van den Bergh,et al.  A NICHING PARTICLE SWARM OPTIMIZER , 2002 .

[15]  Maurice Clerc,et al.  The particle swarm - explosion, stability, and convergence in a multidimensional complex space , 2002, IEEE Trans. Evol. Comput..

[16]  Mauro Birattari,et al.  Swarm Intelligence , 2012, Lecture Notes in Computer Science.