An Ultra-Low-Power Five-Input Majority Gate in Quantum-Dot Cellular Automata

Quantum-dot cellular automata (QCA) is a highly attractive alternative to CMOS for future digital circuit design, relying on its high-performance and low-power-consumption features. This paper anal...

[1]  Trailokya Nath Sasamal,et al.  Implementation of 4×4 vedic multiplier using carry save adder in quantum-dot cellular automata , 2016, 2016 International Conference on Communication and Signal Processing (ICCSP).

[2]  Graham A. Jullien,et al.  Simple 4-bit processor based on quantum-dot cellular automata (QCA) , 2005, 2005 IEEE International Conference on Application-Specific Systems, Architecture Processors (ASAP'05).

[3]  Wei Wang,et al.  Quantum-dot cellular automata adders , 2003, 2003 Third IEEE Conference on Nanotechnology, 2003. IEEE-NANO 2003..

[4]  Ismo Hänninen,et al.  Binary Adders on Quantum-Dot Cellular Automata , 2010, J. Signal Process. Syst..

[5]  S. Kassa,et al.  A novel design of quantum dot cellular automata 5-input majority gate with some physical proofs , 2016 .

[6]  Mostafa Rahimi Azghadi,et al.  A Novel Design for Quantum-dot Cellular Automata Cells and Full Adders , 2007, ArXiv.

[7]  Bibhash Sen,et al.  Cost effective realization of XOR logic in QCA , 2017, 2017 7th International Symposium on Embedded Computing and System Design (ISED).

[8]  Snider,et al.  Digital logic gate using quantum-Dot cellular automata , 1999, Science.

[9]  Keivan Navi,et al.  An energy and cost efficient majority-based RAM cell in quantum-dot cellular automata , 2017 .

[10]  Mostafa Rahimi Azghadi,et al.  A new quantum-dot cellular automata full-adder , 2016, 2016 5th International Conference on Computer Science and Network Technology (ICCSNT).

[11]  Bibhash Sen,et al.  Design of Efficient Full Adder in Quantum-Dot Cellular Automata , 2013, TheScientificWorldJournal.

[12]  G.A. Jullien,et al.  A method of majority logic reduction for quantum cellular automata , 2004, IEEE Transactions on Nanotechnology.

[13]  Massimo Ruo Roch,et al.  Feedbacks in QCA: A Quantitative Approach , 2015, IEEE Transactions on Very Large Scale Integration (VLSI) Systems.

[14]  Ronald F. DeMara,et al.  Design and evaluation of an ultra-area-efficient fault-tolerant QCA full adder , 2015, Microelectron. J..

[15]  Keivan Navi,et al.  Coplanar wire crossing in quantum cellular automata using a ternary cell , 2013, IET Circuits Devices Syst..

[16]  Graham A. Jullien,et al.  Performance comparison of quantum-dot cellular automata adders , 2005, 2005 IEEE International Symposium on Circuits and Systems.

[17]  Mostafa Rahimi Azghadi,et al.  Restoring and non-restoring array divider designs in Quantum-dot Cellular Automata , 2015, Inf. Sci..

[18]  Keivan Navi,et al.  Novel Efficient Adder Circuits for Quantum-Dot Cellular Automata , 2011 .

[19]  Trailokya Nath Sasamal,et al.  An efficient design of Quantum-dot Cellular Automata based 5-input majority gate with power analysis , 2018 .

[20]  Keivan Navi,et al.  A Novel Robust QCA Full-adder☆ , 2015 .

[21]  Charles H. Bennett,et al.  Logical reversibility of computation , 1973 .

[22]  P. K. Dakhole,et al.  Analysis of various approaches used for the implementation of QCA based full adder circuit , 2016, 2016 International Conference on Electrical, Electronics, and Optimization Techniques (ICEEOT).

[23]  Trailokya Nath Sasamal,et al.  An optimal design of full adder based on 5-input majority gate in coplanar quantum-dot cellular automata , 2016 .

[24]  Keivan Navi,et al.  Novel Robust Single Layer Wire Crossing Approach for Exclusive OR Sum of Products Logic Design with Quantum-Dot Cellular Automata , 2014, J. Low Power Electron..

[25]  Bibhash Sen,et al.  Reliability-aware design for programmable QCA logic with scalable clocking circuit , 2017 .

[26]  Bahniman Ghosh,et al.  Ripple carry adder using five input majority gates , 2012 .

[27]  Shweta Meena,et al.  A robust design of coplanar full adder and 4-bit Ripple Carry adder using qunatum-dot cellular automata , 2016, 2016 IEEE International Conference on Recent Trends in Electronics, Information & Communication Technology (RTEICT).

[28]  Mohammad Hossein Moaiyeri,et al.  Designing efficient QCA logical circuits with power dissipation analysis , 2015, Microelectron. J..

[29]  Reza Sabbaghi-Nadooshan,et al.  A novel design of 8-bit adder/subtractor by quantum-dot cellular automata , 2014, J. Comput. Syst. Sci..

[30]  Debasis Mitra,et al.  Design of a practical fault-tolerant adder in QCA , 2016, Microelectron. J..

[31]  P. D. Tougaw,et al.  Logical devices implemented using quantum cellular automata , 1994 .

[32]  Mostafa Rahimi Azghadi,et al.  Five-Input Majority Gate, a New Device for Quantum-Dot Cellular Automata , 2010 .

[33]  Debashis De,et al.  Characterisation, applicability and defect analysis for tiles nanostructure of quantum dot cellular automata , 2011 .

[34]  Yuhui Lu,et al.  Bennett clocking of quantum-dot cellular automata and the limits to binary logic scaling , 2006, Nanotechnology.

[35]  Carson Labrado,et al.  Design of adder and subtractor circuits in majority logic-based field-coupled QCA nanocomputing , 2016 .

[36]  Michael T. Niemier,et al.  Eliminating wire crossings for molecular quantum-dot cellular automata implementation , 2005, ICCAD-2005. IEEE/ACM International Conference on Computer-Aided Design, 2005..

[37]  Faranak Rabiei,et al.  A novel design of 5-input majority gate in quantum-dot cellular automata technology , 2017, 2017 IEEE Symposium on Computer Applications & Industrial Electronics (ISCAIE).

[38]  N. Ranganathan,et al.  Reversible Logic-Based Concurrently Testable Latches for Molecular QCA , 2010, IEEE Transactions on Nanotechnology.

[39]  Keivan Navi,et al.  New fully single layer QCA full-adder cell based on feedback model , 2015, Int. J. High Perform. Syst. Archit..

[40]  Guangjun Xie,et al.  An Efficient Module for Full Adders in Quantum-dot Cellular Automata , 2018 .

[41]  José Augusto Miranda Nacif,et al.  A Novel Five-input Multiple-function QCA Threshold Gate , 2018, 2018 IEEE International Symposium on Circuits and Systems (ISCAS).

[42]  P. D. Tougaw,et al.  A device architecture for computing with quantum dots , 1997, Proc. IEEE.

[43]  Milad Sangsefidi,et al.  Coplanar Full Adder in Quantum-Dot Cellular Automata via Clock-Zone-Based Crossover , 2015, IEEE Transactions on Nanotechnology.

[44]  Nima Jafari Navimipour,et al.  An optimized design of full adder based on nanoscale quantum-dot cellular automata , 2018 .

[45]  Mohammad Mohammadi,et al.  An efficient design of full adder in quantum-dot cellular automata (QCA) technology , 2016, Microelectron. J..

[46]  Ali Newaz Bahar,et al.  An Architecture of 2-Dimensional 4-Dot 2-Electron QCA Full Adder and Subtractor with Energy Dissipation Study , 2018, Active and Passive Electronic Components.

[47]  Razieh Farazkish,et al.  Design and characterization of a new fault-tolerant full-adder for quantum-dot cellular automata , 2015, Microprocess. Microsystems.

[48]  Earl E. Swartzlander,et al.  Adder and Multiplier Design in Quantum-Dot Cellular Automata , 2009, IEEE Transactions on Computers.

[49]  Saket Srivastava,et al.  QCAPro - An error-power estimation tool for QCA circuit design , 2011, 2011 IEEE International Symposium of Circuits and Systems (ISCAS).

[50]  Bibhash Sen,et al.  On the reliability of majority logic structure in quantum-dot cellular automata , 2016, Microelectron. J..

[51]  T.J. Dysart,et al.  > Replace This Line with Your Paper Identification Number (double-click Here to Edit) < 1 , 2001 .

[52]  Mehdi Baradaran Tahoori,et al.  Testing of quantum dot cellular automata based designs , 2004, Proceedings Design, Automation and Test in Europe Conference and Exhibition.

[53]  Keivan Navi,et al.  A symmetric quantum-dot cellular automata design for 5-input majority gate , 2014 .

[54]  E. Swartzlander,et al.  Adder Designs and Analyses for Quantum-Dot Cellular Automata , 2007, IEEE Transactions on Nanotechnology.

[55]  Keivan Navi,et al.  Design and evaluation of new majority gate-based RAM cell in quantum-dot cellular automata , 2015, Microelectron. J..

[56]  K. Sridharan,et al.  Low Complexity Design of Ripple Carry and Brent–Kung Adders in QCA , 2012, IEEE Transactions on Nanotechnology.