Shuttling an Electron Spin through a Silicon Quantum Dot Array

Coherent links between qubits separated by tens of micrometers are expected to facilitate scalable quantum computing architectures for spin qubits in electrically-defined quantum dots. These links create space for classical on-chip control electronics between qubit arrays, which can help to alleviate the so-called wiring bottleneck. A promising method of achieving coherent links between distant spin qubits consists of shuttling the spin through an array of quantum dots. Here, we use a linear array of four tunnel-coupled quantum dots in a 28Si/SiGe heterostructure to create a short quantum link. We move an electron spin through the quantum dot array by adjusting the electrochemical potential for each quantum dot sequentially. By pulsing the gates repeatedly, we shuttle an electron forward and backward through the array up to 250 times, which corresponds to a total distance of approximately 80 {\mu}m. We make an estimate of the spin-flip probability per hop in these experiments and conclude that this is well below 0.01% per hop.

[1]  M. Veldhorst,et al.  Simultaneous single-qubit driving of semiconductor spin qubits at the fault-tolerant threshold , 2023, Nature communications.

[2]  B. P. Wuetz,et al.  Universal control of a six-qubit quantum processor in silicon , 2022, Nature.

[3]  S. Tarucha,et al.  A shuttling-based two-qubit logic gate for linking distant silicon quantum processors , 2022, Nature Communications.

[4]  S. Coppersmith,et al.  Atomic fluctuations lifting the energy degeneracy in Si/SiGe quantum dots , 2021, Nature Communications.

[5]  L. Edge,et al.  Coherent spin–valley oscillations in silicon , 2021, Nature Physics.

[6]  J. Petta,et al.  Two-qubit silicon quantum processor with operation fidelity exceeding 99% , 2021, Science advances.

[7]  S. Tarucha,et al.  Fast universal quantum gate above the fault-tolerance threshold in silicon , 2021, Nature.

[8]  S. Trellenkamp,et al.  Conveyor-mode single-electron shuttling in Si/SiGe for a scalable quantum computing architecture , 2021, npj Quantum Information.

[9]  A. Wieck,et al.  In-flight distribution of an electron within a surface acoustic wave , 2021, Applied Physics Letters.

[10]  L. Vandersypen,et al.  Quantum logic with spin qubits crossing the surface code threshold , 2021, Nature.

[11]  J. P. Dehollain,et al.  Qubits made by advanced semiconductor manufacturing , 2021, Nature Electronics.

[12]  R. Schouten,et al.  A four-qubit germanium quantum processor , 2020, Nature.

[13]  M. Feng,et al.  Coherent spin qubit transport in silicon , 2020, Nature Communications.

[14]  A. Wieck,et al.  Distant spin entanglement via fast and coherent electron shuttling , 2020, Nature Nanotechnology.

[15]  H. Riemann,et al.  Low-frequency spin qubit energy splitting noise in highly purified 28Si/SiGe , 2019, npj Quantum Information.

[16]  B. P. Wuetz,et al.  Quantum dot arrays in silicon and germanium , 2019, Applied Physics Letters.

[17]  J. Petta,et al.  Coherent transfer of quantum information in a silicon double quantum dot using resonant SWAP gates , 2019, npj Quantum Information.

[18]  J. R. Petta,et al.  Long-Range Microwave Mediated Interactions Between Electron Spins , 2019 .

[19]  Yadav P. Kandel,et al.  A Heisenberg Spin Teleport , 2019, 1904.05372.

[20]  P. T. Eendebak,et al.  Loading a quantum-dot based “Qubyte” register , 2019, npj Quantum Information.

[21]  J. Petta,et al.  Shuttling a single charge across a one-dimensional array of silicon quantum dots , 2018, Nature Communications.

[22]  R. Sarpong,et al.  Bio-inspired synthesis of xishacorenes A, B, and C, and a new congener from fuscol† †Electronic supplementary information (ESI) available. See DOI: 10.1039/c9sc02572c , 2019, Chemical science.

[23]  J. Baugh,et al.  Network architecture for a topological quantum computer in silicon , 2018, Quantum Science and Technology.

[24]  B. Hensen,et al.  Silicon qubit fidelities approaching incoherent noise limits via pulse engineering , 2018, Nature Electronics.

[25]  A. Wallraff,et al.  Coherent spin–photon coupling using a resonant exchange qubit , 2018, Nature.

[26]  Steven J. Clarke,et al.  Rent's rule and extensibility in quantum computing , 2018, Microprocess. Microsystems.

[27]  B. Hensen,et al.  Fidelity benchmarks for two-qubit gates in silicon , 2018, Nature.

[28]  L. Vandersypen,et al.  Automated tuning of inter-dot tunnel coupling in double quantum dots , 2018, Applied Physics Letters.

[29]  K. Itoh,et al.  A quantum-dot spin qubit with coherence limited by charge noise and fidelity higher than 99.9% , 2018, Nature Nanotechnology.

[30]  Jonas Helsen,et al.  A crossbar network for silicon quantum dot qubits , 2017, Science Advances.

[31]  N. Kalhor,et al.  Strong spin-photon coupling in silicon , 2017, Science.

[32]  Jacob M. Taylor,et al.  A coherent spin–photon interface in silicon , 2017, Nature.

[33]  D. E. Savage,et al.  A programmable two-qubit quantum processor in silicon , 2017, Nature.

[34]  A. Wieck,et al.  Coherent long-distance displacement of individual electron spins , 2017, Nature Communications.

[35]  L. Vandersypen,et al.  Coherent shuttle of electron-spin states , 2017, 1701.00815.

[36]  Hillsboro,et al.  Interfacing spin qubits in quantum dots and donors—hot, dense, and coherent , 2016, 1612.05936.

[37]  R Maurand,et al.  A CMOS silicon spin qubit , 2016, Nature Communications.

[38]  M. Troyer,et al.  Elucidating reaction mechanisms on quantum computers , 2016, Proceedings of the National Academy of Sciences.

[39]  L. Vandersypen,et al.  Single-spin CCD. , 2015, Nature nanotechnology.

[40]  J. P. Dehollain,et al.  An addressable quantum dot qubit with fault-tolerant control-fidelity. , 2014, Nature nanotechnology.

[41]  Gerhard Klimeck,et al.  Spin-valley lifetimes in a silicon quantum dot with tunable valley splitting , 2013, Nature Communications.

[42]  S. Hermelin,et al.  Electrons surfing on a sound wave as a platform for quantum optics with flying electrons , 2011, Nature.

[43]  C. H. W. Barnes,et al.  On-demand single-electron transfer between distant quantum dots , 2011, Nature.

[44]  Gerhard Klimeck,et al.  Spin–orbit splittings in Si/SiGe quantum wells: from ideal Si membranes to realistic heterostructures , 2009, 0908.2417.

[45]  Jacob M. Taylor,et al.  Fault-tolerant architecture for quantum computation using electrically controlled semiconductor spins , 2005 .

[46]  L. Vandersypen,et al.  Single-shot read-out of an individual electron spin in a quantum dot , 2004, Nature.

[47]  W. Hager,et al.  and s , 2019, Shallow Water Hydraulics.

[48]  W. Marsden I and J , 2012 .