Shuttling an Electron Spin through a Silicon Quantum Dot Array
暂无分享,去创建一个
L. Vandersypen | A. Sammak | M. Russ | S. L. D. Snoo | G. Scappucci | S. Amitonov | A. Zwerver | M. T. Mkadzik | M. Ma̧dzik | M. Rimbach-Russ | S. L. de Snoo
[1] M. Veldhorst,et al. Simultaneous single-qubit driving of semiconductor spin qubits at the fault-tolerant threshold , 2023, Nature communications.
[2] B. P. Wuetz,et al. Universal control of a six-qubit quantum processor in silicon , 2022, Nature.
[3] S. Tarucha,et al. A shuttling-based two-qubit logic gate for linking distant silicon quantum processors , 2022, Nature Communications.
[4] S. Coppersmith,et al. Atomic fluctuations lifting the energy degeneracy in Si/SiGe quantum dots , 2021, Nature Communications.
[5] L. Edge,et al. Coherent spin–valley oscillations in silicon , 2021, Nature Physics.
[6] J. Petta,et al. Two-qubit silicon quantum processor with operation fidelity exceeding 99% , 2021, Science advances.
[7] S. Tarucha,et al. Fast universal quantum gate above the fault-tolerance threshold in silicon , 2021, Nature.
[8] S. Trellenkamp,et al. Conveyor-mode single-electron shuttling in Si/SiGe for a scalable quantum computing architecture , 2021, npj Quantum Information.
[9] A. Wieck,et al. In-flight distribution of an electron within a surface acoustic wave , 2021, Applied Physics Letters.
[10] L. Vandersypen,et al. Quantum logic with spin qubits crossing the surface code threshold , 2021, Nature.
[11] J. P. Dehollain,et al. Qubits made by advanced semiconductor manufacturing , 2021, Nature Electronics.
[12] R. Schouten,et al. A four-qubit germanium quantum processor , 2020, Nature.
[13] M. Feng,et al. Coherent spin qubit transport in silicon , 2020, Nature Communications.
[14] A. Wieck,et al. Distant spin entanglement via fast and coherent electron shuttling , 2020, Nature Nanotechnology.
[15] H. Riemann,et al. Low-frequency spin qubit energy splitting noise in highly purified 28Si/SiGe , 2019, npj Quantum Information.
[16] B. P. Wuetz,et al. Quantum dot arrays in silicon and germanium , 2019, Applied Physics Letters.
[17] J. Petta,et al. Coherent transfer of quantum information in a silicon double quantum dot using resonant SWAP gates , 2019, npj Quantum Information.
[18] J. R. Petta,et al. Long-Range Microwave Mediated Interactions Between Electron Spins , 2019 .
[19] Yadav P. Kandel,et al. A Heisenberg Spin Teleport , 2019, 1904.05372.
[20] P. T. Eendebak,et al. Loading a quantum-dot based “Qubyte” register , 2019, npj Quantum Information.
[21] J. Petta,et al. Shuttling a single charge across a one-dimensional array of silicon quantum dots , 2018, Nature Communications.
[22] R. Sarpong,et al. Bio-inspired synthesis of xishacorenes A, B, and C, and a new congener from fuscol† †Electronic supplementary information (ESI) available. See DOI: 10.1039/c9sc02572c , 2019, Chemical science.
[23] J. Baugh,et al. Network architecture for a topological quantum computer in silicon , 2018, Quantum Science and Technology.
[24] B. Hensen,et al. Silicon qubit fidelities approaching incoherent noise limits via pulse engineering , 2018, Nature Electronics.
[25] A. Wallraff,et al. Coherent spin–photon coupling using a resonant exchange qubit , 2018, Nature.
[26] Steven J. Clarke,et al. Rent's rule and extensibility in quantum computing , 2018, Microprocess. Microsystems.
[27] B. Hensen,et al. Fidelity benchmarks for two-qubit gates in silicon , 2018, Nature.
[28] L. Vandersypen,et al. Automated tuning of inter-dot tunnel coupling in double quantum dots , 2018, Applied Physics Letters.
[29] K. Itoh,et al. A quantum-dot spin qubit with coherence limited by charge noise and fidelity higher than 99.9% , 2018, Nature Nanotechnology.
[30] Jonas Helsen,et al. A crossbar network for silicon quantum dot qubits , 2017, Science Advances.
[31] N. Kalhor,et al. Strong spin-photon coupling in silicon , 2017, Science.
[32] Jacob M. Taylor,et al. A coherent spin–photon interface in silicon , 2017, Nature.
[33] D. E. Savage,et al. A programmable two-qubit quantum processor in silicon , 2017, Nature.
[34] A. Wieck,et al. Coherent long-distance displacement of individual electron spins , 2017, Nature Communications.
[35] L. Vandersypen,et al. Coherent shuttle of electron-spin states , 2017, 1701.00815.
[36] Hillsboro,et al. Interfacing spin qubits in quantum dots and donors—hot, dense, and coherent , 2016, 1612.05936.
[37] R Maurand,et al. A CMOS silicon spin qubit , 2016, Nature Communications.
[38] M. Troyer,et al. Elucidating reaction mechanisms on quantum computers , 2016, Proceedings of the National Academy of Sciences.
[39] L. Vandersypen,et al. Single-spin CCD. , 2015, Nature nanotechnology.
[40] J. P. Dehollain,et al. An addressable quantum dot qubit with fault-tolerant control-fidelity. , 2014, Nature nanotechnology.
[41] Gerhard Klimeck,et al. Spin-valley lifetimes in a silicon quantum dot with tunable valley splitting , 2013, Nature Communications.
[42] S. Hermelin,et al. Electrons surfing on a sound wave as a platform for quantum optics with flying electrons , 2011, Nature.
[43] C. H. W. Barnes,et al. On-demand single-electron transfer between distant quantum dots , 2011, Nature.
[44] Gerhard Klimeck,et al. Spin–orbit splittings in Si/SiGe quantum wells: from ideal Si membranes to realistic heterostructures , 2009, 0908.2417.
[45] Jacob M. Taylor,et al. Fault-tolerant architecture for quantum computation using electrically controlled semiconductor spins , 2005 .
[46] L. Vandersypen,et al. Single-shot read-out of an individual electron spin in a quantum dot , 2004, Nature.
[47] W. Hager,et al. and s , 2019, Shallow Water Hydraulics.
[48] W. Marsden. I and J , 2012 .