Probabilistic and numerical validation of homology computations for nodal domains

Homology has long been accepted as an important computable tool for quantifying complex structures. In many applications these structures arise as nodal domains of real-valued functions and are therefore amenable only to a numerical study, based on suitable discretizations. Such an approach immediately raises the question of how accurate the resulting homology computations are. In this paper we present a probabilistic approach to quantifying the validity of homology computations for nodal domains of random Fourier series in one and two space dimensions, which furnishes explicit probabilistic apriori bounds for the suitability of certain discretization sizes. In addition, we introduce a numerical method for verifying the homology computation using interval arithmetic.

[1]  Kambiz Farahmand Topics in Random Polynomials , 1998 .

[2]  J. Dunnage The Number of Real Zeros of a Random Trigonometric Polynomial , 1966 .

[3]  Evelyn Sander,et al.  Monte Carlo Simulations for Spinodal Decomposition , 1999 .

[4]  D. Donoho,et al.  Hessian eigenmaps: Locally linear embedding techniques for high-dimensional data , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[5]  Evelyn Sander,et al.  Unexpectedly Linear Behavior for the Cahn-Hilliard Equation , 2000, SIAM J. Appl. Math..

[6]  R. Adler,et al.  The Geometry of Random Fields , 1982 .

[7]  Thomas Wanner,et al.  Maximum norms of random sums and transient pattern formation , 2003 .

[8]  Dirk Blömker,et al.  Spinodal Decomposition¶for the Cahn–Hilliard–Cook Equation , 2001 .

[9]  P. Rousseeuw,et al.  Wiley Series in Probability and Mathematical Statistics , 2005 .

[10]  J. Tenenbaum,et al.  A global geometric framework for nonlinear dimensionality reduction. , 2000, Science.

[11]  Konstantin Mischaikow,et al.  Evolution of pattern complexity in the Cahn–Hilliard theory of phase separation , 2005 .

[12]  G. Pisier,et al.  Random Fourier Series with Applications to Harmonic Analysis. , 1981 .

[13]  Stephen Smale,et al.  Finding the Homology of Submanifolds with High Confidence from Random Samples , 2008, Discret. Comput. Geom..

[14]  S T Roweis,et al.  Nonlinear dimensionality reduction by locally linear embedding. , 2000, Science.

[15]  J. E. Hilliard,et al.  Free Energy of a Nonuniform System. I. Interfacial Free Energy , 1958 .

[16]  Gunnar E. Carlsson,et al.  Topological estimation using witness complexes , 2004, PBG.

[17]  Konstantin Mischaikow,et al.  Topological characterization of spatial-temporal chaos. , 2004, Physical review. E, Statistical, nonlinear, and soft matter physics.

[18]  Dirk Blömker,et al.  Spinodal Decomposition¶for the Cahn–Hilliard–Cook Equation , 2001 .

[19]  K. Mischaikow,et al.  Probabilistic validation of homology computations for nodal domains , 2007, 0707.4588.

[20]  R. Adler The Geometry of Random Fields , 2009 .

[21]  J. Kahane Some Random Series of Functions , 1985 .

[22]  H. E. Cook,et al.  Brownian motion in spinodal decomposition , 1970 .

[23]  Vin de Silva,et al.  Topological approximation by small simplicial complexes , 2003 .