Robust optimization of dense gas flows under uncertain operating conditions

A robust optimization procedure based on a multi-objective genetic algorithm (MOGA) is used to generate airfoil profiles for transonic inviscid flows of dense gases, subject to uncertainties in the upstream thermodynamic conditions. The effect of the random variations on system response is evaluated using a non-intrusive polynomial chaos (PC) based method known as the probabilistic collocation method (PCM). After initial PCM simulations which showed that the dense gas system was highly sensitive to input parameter variation, a multi-objective genetic algorithm coupled to the PCM produced a Pareto front of optimized individual geometries which exhibited improvements in mean performance and/or stability over the baseline NACA0012 airfoil. This type of analysis is essential in improving the feasibility of organic Rankine cycle (ORC) turbines, which are typically designed to recover energy from variable sources such as waste heat from industrial processes.

[1]  A. Jameson,et al.  Numerical solution of the Euler equations by finite volume methods using Runge Kutta time stepping schemes , 1981 .

[2]  O. L. Maître,et al.  Uncertainty propagation in CFD using polynomial chaos decomposition , 2006 .

[3]  V. Maizza,et al.  Unconventional working fluids in organic Rankine-cycles for waste energy recovery systems , 2001 .

[4]  Pietro Marco Congedo,et al.  Optimal airfoil shapes for viscous transonic flows of Bethe-Zel'dovich-Thompson fluids , 2008 .

[5]  P. Cinnella Transonic flows of dense gases over finite wings , 2008 .

[6]  Kalyanmoy Deb,et al.  Multi-objective optimization using evolutionary algorithms , 2001, Wiley-Interscience series in systems and optimization.

[7]  Pietro Marco Congedo,et al.  Airfoil Shape Optimization for Transonic Flows of Bethe-Zel'dovich-Thompson Fluids , 2007 .

[8]  Layne T. Watson,et al.  Supersonic flows of dense gases in cascade configurations , 1997, Journal of Fluid Mechanics.

[9]  G. M. Tarkenton,et al.  Transonic flows of Bethe—Zel'dovich—Thompson fluids , 1992, Journal of Fluid Mechanics.

[10]  R. LeVeque Finite Volume Methods for Hyperbolic Problems: Characteristics and Riemann Problems for Linear Hyperbolic Equations , 2002 .

[11]  Timo Siikonen,et al.  Numerical Simulation of Real-Gas Flow in a Supersonic Turbine Nozzle Ring , 2002 .

[12]  Kalyanmoy Deb,et al.  Muiltiobjective Optimization Using Nondominated Sorting in Genetic Algorithms , 1994, Evolutionary Computation.

[13]  Jeroen A. S. Witteveen,et al.  Probabilistic Collocation: An Efficient Non-Intrusive Approach for Arbitrarily Distributed Parametric Uncertainties , 2007 .

[14]  D. Xiu,et al.  Modeling uncertainty in flow simulations via generalized polynomial chaos , 2003 .

[15]  Jeroen A. S. Witteveen,et al.  EFFICIENT UNCERTAINTY QUANTIFICATION USING A TWO-STEP APPROACH WITH CHAOS COLLOCATION , 2006 .

[16]  P. A. Thompson,et al.  Negative shock waves , 1973, Journal of Fluid Mechanics.

[17]  Guillermo Rein,et al.  44th AIAA Aerospace Sciences Meeting and Exhibit , 2006 .

[18]  N. R. Nannan,et al.  On the computation of the fundamental derivative of gas dynamics using equations of state , 2009 .

[19]  Brian Argrow,et al.  Assessment of thermodynamic models for dense gas dynamics , 2004 .

[20]  George Emanuel Assessment of the Martin-Hou Equation for Modeling a Nonclassical Fluid , 1994 .

[21]  Costante Mario Invernizzi,et al.  Supercritical heat pump cycles , 1994 .

[22]  Pietro Marco Congedo,et al.  Numerical Solver for Dense Gas Flows , 2005 .

[23]  Robert W. Walters,et al.  Uncertainty analysis for fluid mechanics with applications , 2002 .

[24]  Yehuda Salu,et al.  Turbulent diffusion from a quasi-kinematical point of view , 1977 .

[25]  N. G. Kirillov Analysis of Modern Natural Gas Liquefaction Technologies , 2004 .

[26]  Yu-Chun Hou,et al.  Development of an equation of state for gases , 1955 .

[27]  P. Cinnella,et al.  GA-Hardness of Aerodynamic Optimization Problems: Analysis and Proposed Cures , 2007 .

[28]  Brian Argrow,et al.  Application of Bethe -Zel'dovich-Thompson Fluids in Organic Rankine Cycle Engines , 2000 .

[29]  George Em Karniadakis,et al.  Predictability and uncertainty in CFD , 2003 .

[30]  Transonic Flows of BZT Fluids Through Turbine Cascades , 2006 .

[31]  Pietro Marco Congedo,et al.  Aerodynamic Performance of Transonic Bethe-Zel'dovich-Thompson Flows past an Airfoil , 2005 .

[32]  Ibrahim Dincer,et al.  Performance investigation of high-temperature heat pumps with various BZT working fluids , 2009 .

[33]  P. A. Thompson,et al.  A Fundamental Derivative in Gasdynamics , 1971 .

[34]  Rémi Abgrall A simple, flexible and generic deterministic approach to uncertainty quantifications in non linear problems: application to fluid flow problems , 2008 .

[35]  C. Corre,et al.  Shape Optimization for Dense Gas Flows in Turbine Cascades , 2009 .

[36]  Paola Cinnella,et al.  Third-order accurate finite volume schemes for Euler computations on curvilinear meshes , 2001 .

[37]  M. S. Cramer Negative nonlinearity in selected fluorocarbons , 1989 .

[38]  Pietro Marco Congedo,et al.  Quantification of Thermodynamic Uncertainties in Real Gas Flows , 2009 .

[39]  S. K. Wang,et al.  A Review of Organic Rankine Cycles (ORCs) for the Recovery of Low-grade Waste Heat , 1997 .

[40]  P. A. Thompson,et al.  Existence of Real Fluids with a Negative Fundamental Derivative Γ , 1972 .

[41]  Alfred Kluwick,et al.  On the propagation of waves exhibiting both positive and negative nonlinearity , 1984, Journal of Fluid Mechanics.

[42]  Pietro Marco Congedo,et al.  Inviscid and viscous aerodynamics of dense gases , 2007, Journal of Fluid Mechanics.