Optimization of multilaminated structures using higher-order deformation models

Abstract A refined shear deformation theory assuming a non-linear variation for the displacement field is used to develop discrete models for the sensitivity analysis and optimization of thick and thin multilayered angle ply composite plate structures. The structural and sensitivity analysis formulation is developed for a family of C 0 Lagrangian elements, with eleven, nine and seven degrees of freedom per node using a single layer formulation. The design sensitivities of structural response for static, free vibrations and buckling situations for objective and/or constraint functions with respect to ply angles and ply thicknesses are developed. These different objectives and/or constraints can be generalized displacements at specified nodes, Hoffman's stress failure criterion, elastic strain energy, natural frequencies of chosen vibration modes, buckling load parameter or the volume of structural material. The design sensitivities are evaluated either analytically or semi-analytically. The accuracy and relative performance of the proposed discrete models are compared and discussed among the developed elements and with alternative models. A few illustrative test designs are discussed to show the applicability of the proposed models.

[1]  B. H. V. Topping,et al.  Advances in analysis and design of composites , 1996 .

[2]  J. N. Reddy,et al.  Variable Kinematic Modelling of Laminated Composite Plates , 1996 .

[3]  Siak Piang Lim,et al.  Vibration of laminated orthotropic plates using a simplified higher-order deformation theory , 1988 .

[4]  N. J. Pagano,et al.  Elastic Behavior of Multilayered Bidirectional Composites , 1972 .

[5]  Tarun Kant,et al.  A Simple Finite Element Formulation of a Higher-order Theory for Unsymmetrically Laminated Composite Plates , 1988 .

[6]  A. Araújo,et al.  Characterization of material parameters of composite plate specimens using optimization and experimental vibrational data , 1996 .

[7]  Raphael T. Haftka,et al.  Recent developments in structural sensitivity analysis , 1989 .

[8]  R. D. Mindlin,et al.  Influence of rotary inertia and shear on flexural motions of isotropic, elastic plates , 1951 .

[9]  J. N. Reddy,et al.  Buckling and vibration of laminated composite plates using various plate theories , 1989 .

[10]  A. V. Krishna Murty Higher order theory for vibrations of thick plates , 1977 .

[11]  Tai-Yan Kam,et al.  Multilevel optimal design of laminated composite plate structures , 1989 .

[12]  L. K. Stevens,et al.  A Higher Order Theory for Free Vibration of Orthotropic, Homogeneous, and Laminated Rectangular Plates , 1984 .

[13]  Ozden O. Ochoa,et al.  Buckling of Composite Plates Using Shear Deformable Finite Elements , 1986 .

[14]  J. Reddy,et al.  Stability and vibration of isotropic, orthotropic and laminated plates according to a higher-order shear deformation theory , 1985 .

[15]  T. Kant,et al.  Geometrically non-linear analysis of symmetrically laminated composite and sandwich shells with a higher-order theory and C0 finite elements , 1994 .

[16]  J. N. Reddy,et al.  Analysis of laminated composite plates using a higher‐order shear deformation theory , 1985 .

[17]  Tai-Yan Kam,et al.  Buckling of shear deformable laminated composite plates , 1992 .

[18]  C. M. Mota Soares,et al.  DESIGN SENSITIVITY ANALYSIS AND OPTIMAL DESIGN OF COMPOSITE STRUCTURES USING HIGHER ORDER DISCRETE MODELS , 1997 .

[19]  R. Christensen,et al.  A High-Order Theory of Plate Deformation—Part 2: Laminated Plates , 1977 .

[20]  J. Whitney,et al.  Shear Correction Factors for Orthotropic Laminates Under Static Load , 1973 .

[21]  A. Ghosh,et al.  A simple finite element for the analysis of laminated plates , 1992 .

[22]  P. Frederiksen Natural vibrations of free thick plates and identification of transverse shear moduli , 1993 .

[23]  J. Reddy,et al.  THEORIES AND COMPUTATIONAL MODELS FOR COMPOSITE LAMINATES , 1994 .

[24]  R. Haftka,et al.  Sensitivity Analysis of Discrete Structural Systems , 1986 .

[25]  N. Olhoff,et al.  Multiple eigenvalues in structural optimization problems , 1994 .

[26]  G. Simitses Buckling of moderately thick laminated cylindrical shells: a review , 1996 .

[27]  Sarp Adali,et al.  Optimal design of hybrid laminates with discrete ply angles for maximum buckling load and minimum cost , 1995 .

[28]  Mark Walker,et al.  Multiobjective optimization of laminated plates for maximum prebuckling, buckling and postbuckling strength using continuous and discrete ply angles , 1996 .

[29]  Ramana V. Grandhi,et al.  Structural optimization with frequency constraints - A review , 1992 .

[30]  Pauli Pedersen,et al.  Optimal Design with Advanced Materials , 1991 .

[31]  Tarun Kant,et al.  A critical review and some results of recently developed refined theories of fiber-reinforced laminated composites and sandwiches , 1993 .

[32]  Rakesh K. Kapania,et al.  Recent advances in analysis of laminated beams and plates. Part I - Sheareffects and buckling. , 1989 .

[33]  Carlos A. Mota Soares,et al.  Buckling behaviour of laminated composite structures using a discrete higher-order displacement model , 1996 .

[34]  Ahmed K. Noor,et al.  Finite element buckling and postbuckling solutions for multilayered composite panels , 1994 .

[35]  Liviu Librescu,et al.  Elastostatics and Kinetics of Anisotropic and Heterogeneous Shell-Type Structures , 1975 .

[36]  José Herskovits,et al.  A discrete model for the optimal design of thin composite plate-shell type structures using a two-level approach , 1995 .

[37]  Tarun Kant,et al.  Free vibration of symmetrically laminated plates using a higher‐order theory with finite element technique , 1989 .

[38]  Ahmed K. Noor,et al.  Assessment of computational models for multilayered anisotropic plates , 1990 .

[39]  S. Liu,et al.  A vibration analysis of composite laminated plates , 1991 .

[40]  A. Ghosh,et al.  Buckling of laminated plates—a simple finite element based on higher-order theory , 1994 .

[41]  C. M. Mota Soares,et al.  Shape optimization of axisymmetric shells using a higher-order shear deformation theory , 1995 .

[42]  J. N. Reddy,et al.  On refined theories of composite laminates , 1990 .

[43]  J. N. Reddy,et al.  Stability and natural vibration analysis of laminated plates by using a mixed element based on a refined plate theory , 1986 .

[44]  M. Levinson,et al.  An accurate, simple theory of the statics and dynamics of elastic plates , 1980 .

[45]  J. N. Reddy,et al.  A review of refined theories of laminated composite plates , 1990 .

[46]  Paul Seide,et al.  An improved approximate theory for the bending of laminated plates , 1980 .

[47]  R. Christensen,et al.  A HIGH-ORDER THEORY OF PLATE DEFORMATION, PART 1: HOMOGENEOUS PLATES , 1977 .

[48]  Rakesh K. Kapania,et al.  Recent Advances in Analysis of Laminated Beams and Plates, Part II: Vibrations and Wave Propagation , 1989 .

[49]  A. Torres Marques,et al.  Multilevel optimization of laminated composite structures , 1994 .

[50]  Charles W. Bert,et al.  A critical evaluation of new plate theories applied to laminated composites , 1984 .

[51]  J. N. Reddy,et al.  On refined computational models of composite laminates , 1989 .

[52]  O. Zienkiewicz The Finite Element Method In Engineering Science , 1971 .

[53]  Anthony N. Palazotto,et al.  Nonlinear Analysis of Shell Structures , 1992 .

[54]  A. K. Noor,et al.  Free vibrations of multilayered composite plates. , 1973 .

[55]  Tarun Kant,et al.  Finite element transient dynamic analysis of isotropic and fibre reinforced composite plates using a higher-order theory , 1988 .

[56]  J. Reddy An evaluation of equivalent-single-layer and layerwise theories of composite laminates , 1993 .

[57]  Chih‐Ping Wu,et al.  Vibration And Stability Of Laminated Plates Based On A Local High Order Plate Theory , 1994 .

[58]  Serge Abrate,et al.  Optimal design of laminated plates and shells , 1994 .

[59]  Garret N. Vanderplaats,et al.  Numerical Optimization Techniques for Engineering Design: With Applications , 1984 .

[60]  A. Leissa A Review of Laminated Composite Plate Buckling , 1987 .

[61]  C. Bert,et al.  The behavior of structures composed of composite materials , 1986 .

[62]  Klaus-Jürgen Bathe,et al.  A simple and effective element for analysis of general shell structures , 1981 .

[63]  Klaus-Jürgen Bathe,et al.  A study of three‐node triangular plate bending elements , 1980 .

[64]  Ahmed A. Khdeir,et al.  Free vibration and buckling of unsymmetric cross-ply laminated plates using a refined theory , 1989 .

[65]  Arthur W. Leissa,et al.  An Overview of Composite Plate Buckling , 1987 .

[66]  H. V. Lakshminarayana,et al.  A shear‐flexible triangular finite element model for laminated composite plates , 1984 .

[67]  J. Reddy A Simple Higher-Order Theory for Laminated Composite Plates , 1984 .