Dengue virus life cycle: viral and host factors modulating infectivity

Dengue virus (DENV 1-4) represents a major emerging arthropod-borne pathogen. All four DENV serotypes are prevalent in the (sub) tropical regions of the world and infect 50–100 million individuals annually. Whereas the majority of DENV infections proceed asymptomatically or result in self-limited dengue fever, an increasing number of patients present more severe manifestations, such as dengue hemorrhagic fever and dengue shock syndrome. In this review we will give an overview of the infectious life cycle of DENV and will discuss the viral and host factors that are important in controlling DENV infection.

[1]  S. Halstead,et al.  Dengue hemorrhagic fever in infants: a study of clinical and cytokine profiles. , 2004, The Journal of infectious diseases.

[2]  R. Dwek,et al.  The Mannose Receptor Mediates Dengue Virus Infection of Macrophages , 2008, PLoS pathogens.

[3]  G. Nybakken,et al.  The stoichiometry of antibody-mediated neutralization and enhancement of West Nile virus infection. , 2007, Cell host & microbe.

[4]  M. Blettner,et al.  Vascular leakage in severe dengue virus infections: a potential role for the nonstructural viral protein NS1 and complement. , 2006, The Journal of infectious diseases.

[5]  C. Thepparit,et al.  Serotype-Specific Entry of Dengue Virus into Liver Cells: Identification of the 37-Kilodalton/67-Kilodalton High-Affinity Laminin Receptor as a Dengue Virus Serotype 1 Receptor , 2004, Journal of Virology.

[6]  J. Esko,et al.  Dengue virus infectivity depends on envelope protein binding to target cell heparan sulfate , 1997, Nature Medicine.

[7]  M. Aebi,et al.  cDNA structures and regulation of two interferon-induced human Mx proteins , 1989, Molecular and cellular biology.

[8]  María de Lourdes Muñoz,et al.  The four serotypes of dengue recognize the same putative receptors in Aedes aegypti midgut and Ae. albopictus cells , 2006, BMC Microbiology.

[9]  A. Davidson,et al.  Histidine 39 in the dengue virus type 2 M protein has an important role in virus assembly. , 2004, The Journal of general virology.

[10]  J. Lepault,et al.  Dengue Virus Type 1 Nonstructural Glycoprotein NS1 Is Secreted from Mammalian Cells as a Soluble Hexamer in a Glycosylation-Dependent Fashion , 1999, Journal of Virology.

[11]  D. Hober,et al.  Serum levels of tumor necrosis factor-alpha (TNF-alpha), interleukin-6 (IL-6), and interleukin-1 beta (IL-1 beta) in dengue-infected patients. , 1993, The American journal of tropical medicine and hygiene.

[12]  S. Harrison Viral membrane fusion , 2008, Nature Structural &Molecular Biology.

[13]  Ying Zhang,et al.  Visualization of membrane protein domains by cryo-electron microscopy of dengue virus , 2003, Nature Structural Biology.

[14]  E. Konishi,et al.  Dengue type 2 virus subviral extracellular particles produced by a stably transfected mammalian cell line and their evaluation for a subunit vaccine. , 2002, Vaccine.

[15]  Tyen‐Po Chen,et al.  Clinical characteristics of dengue and dengue hemorrhagic fever in a medical center of southern Taiwan during the 2002 epidemic. , 2006, Journal of microbiology, immunology, and infection = Wei mian yu gan ran za zhi.

[16]  S. Halstead,et al.  Dengue Hemorrhagic Fever in Infants: Research Opportunities Ignored , 2002, Emerging infectious diseases.

[17]  Translation efficiency determines differences in cellular infection among dengue virus type 2 strains. , 2003, Virology.

[18]  S. Halstead,et al.  Antibody-enhanced dengue virus infection in primate leukocytes , 1977, Nature.

[19]  S. Halstead,et al.  Failure of secondary infection with American genotype dengue 2 to cause dengue haemorrhagic fever , 1999, The Lancet.

[20]  Y. Modis,et al.  Variable Surface Epitopes in the Crystal Structure of Dengue Virus Type 3 Envelope Glycoprotein , 2005, Journal of Virology.

[21]  A. Davidson,et al.  Replication of dengue virus type 2 in human monocyte-derived macrophages: comparisons of isolates and recombinant viruses with substitutions at amino acid 390 in the envelope glycoprotein. , 2001, The American journal of tropical medicine and hygiene.

[22]  M. Guzmán,et al.  Why dengue haemorrhagic fever in Cuba? 1. Individual risk factors for dengue haemorrhagic fever/dengue shock syndrome (DHF/DSS). , 1987, Transactions of the Royal Society of Tropical Medicine and Hygiene.

[23]  M. Fernandez-Garcia,et al.  Pathogenesis of flavivirus infections: using and abusing the host cell. , 2009, Cell host & microbe.

[24]  E. Paoletti,et al.  Recombinant vaccinia viruses co-expressing dengue-1 glycoproteins prM and E induce neutralizing antibodies in mice. , 1994, Vaccine.

[25]  S. Tajima,et al.  Characterization of Asn130-to-Ala mutant of dengue type 1 virus NS1 protein , 2008, Virus Genes.

[26]  Adolfo García-Sastre,et al.  Inhibition of interferon signaling by dengue virus , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[27]  S. Halstead,et al.  Effect of age on outcome of secondary dengue 2 infections. , 2002, International journal of infectious diseases : IJID : official publication of the International Society for Infectious Diseases.

[28]  A. Nisalak,et al.  Activation of T lymphocytes in dengue virus infections. High levels of soluble interleukin 2 receptor, soluble CD4, soluble CD8, interleukin 2, and interferon-gamma in sera of children with dengue. , 1991, The Journal of clinical investigation.

[29]  Fernando A Bozza,et al.  Multiplex cytokine profile from dengue patients: MIP-1beta and IFN-gamma as predictive factors for severity , 2008, BMC infectious diseases.

[30]  G. Nybakken,et al.  Crystal Structure of the West Nile Virus Envelope Glycoprotein , 2006, Journal of Virology.

[31]  Yee‐Shin Lin,et al.  The Dual-Specific Binding of Dengue Virus and Target Cells for the Antibody-Dependent Enhancement of Dengue Virus Infection1 , 2006, The Journal of Immunology.

[32]  M. Aye,et al.  Risk factors in dengue shock syndrome. , 1997, The American journal of tropical medicine and hygiene.

[33]  M. Gale,et al.  Regulation of interferon production and innate antiviral immunity through translational control of IRF-7 , 2008, Cell Research.

[34]  K. Ikuta,et al.  Secreted complement regulatory protein clusterin interacts with dengue virus nonstructural protein 1. , 2007, Biochemical and biophysical research communications.

[35]  R. Steinman,et al.  DC-SIGN (CD209) Mediates Dengue Virus Infection of Human Dendritic Cells , 2003, The Journal of experimental medicine.

[36]  Yee‐Shin Lin,et al.  Flow Cytometric Determination for Dengue Virus-Infected Cells: Its Application for Antibody-Dependent Enhancement Study , 2005 .

[37]  Y. Modis,et al.  A ligand-binding pocket in the dengue virus envelope glycoprotein , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[38]  Michael S. Diamond,et al.  Modulation of Dengue Virus Infection in Human Cells by Alpha, Beta, and Gamma Interferons , 2000, Journal of Virology.

[39]  Mario Recker,et al.  Immunological serotype interactions and their effect on the epidemiological pattern of dengue , 2009, Proceedings of the Royal Society B: Biological Sciences.

[40]  O. Haller,et al.  Resistance to influenza virus and vesicular stomatitis virus conferred by expression of human MxA protein , 1990, Journal of virology.

[41]  E. Harris,et al.  Recent Advances in Deciphering Viral and Host Determinants of Dengue Virus Replication and Pathogenesis , 2006, Journal of Virology.

[42]  D. Smith,et al.  Identification of GRP 78 (BiP) as a liver cell expressed receptor element for dengue virus serotype 2 , 2004, Archives of Virology.

[43]  J. Aaskov,et al.  Processing of the dengue virus type 2 proteins prM and C-prM. , 1993, The Journal of general virology.

[44]  J. Farrar,et al.  Maternal antibody and viral factors in the pathogenesis of dengue virus in infants. , 2007, The Journal of infectious diseases.

[45]  M. Guzmán,et al.  Reemergence of dengue in Cuba: a 1997 epidemic in Santiago de Cuba. , 1998, Emerging infectious diseases.

[46]  D. Gubler,et al.  Dengue/dengue haemorrhagic fever: history and current status. , 2008, Novartis Foundation symposium.

[47]  A. Basu,et al.  Vascular endothelium: the battlefield of dengue viruses , 2008, FEMS immunology and medical microbiology.

[48]  F. Ennis,et al.  Dengue virus-specific human T cell clones. Serotype crossreactive proliferation, interferon gamma production, and cytotoxic activity , 1989, The Journal of experimental medicine.

[49]  J. Smit,et al.  Role of antibodies in controlling dengue virus infection. , 2009, Immunobiology.

[50]  S. M. Costa,et al.  DNA vaccine against the non-structural 1 protein (NS1) of dengue 2 virus. , 2006, Vaccine.

[51]  Christopher T. Jones,et al.  Flavivirus Capsid Is a Dimeric Alpha-Helical Protein , 2003, Journal of Virology.

[52]  R. Rico-Hesse,et al.  Selection for Virulent Dengue Viruses Occurs in Humans and Mosquitoes , 2005, Journal of Virology.

[53]  D. Gubler Epidemic dengue/dengue hemorrhagic fever as a public health, social and economic problem in the 21st century. , 2002, Trends in microbiology.

[54]  P. Malasit,et al.  Alterations of pr-M Cleavage and Virus Export in pr-M Junction Chimeric Dengue Viruses , 2004, Journal of Virology.

[55]  T. Oliphant,et al.  Antibody Recognition and Neutralization Determinants on Domains I and II of West Nile Virus Envelope Protein , 2006, Journal of Virology.

[56]  M. Rossmann,et al.  A structural perspective of the flavivirus life cycle , 2005, Nature Reviews Microbiology.

[57]  Gregory D. Gromowski,et al.  Characterization of an antigenic site that contains a dominant, type-specific neutralization determinant on the envelope protein domain III (ED3) of dengue 2 virus. , 2007, Virology.

[58]  S. Halstead Observations related to pathogensis of dengue hemorrhagic fever. VI. Hypotheses and discussion. , 1970, The Yale journal of biology and medicine.

[59]  L. Tsuneto,et al.  Association of human leukocyte antigen DQ1 and dengue fever in a white Southern Brazilian population. , 2004, Memorias do Instituto Oswaldo Cruz.

[60]  Y. Modis,et al.  Structure of the dengue virus envelope protein after membrane fusion , 2004, Nature.

[61]  G. Chang,et al.  A recombinant particulate antigen of Japanese encephalitis virus produced in stably-transformed cells is an effective noninfectious antigen and subunit immunogen. , 2001, Journal of virological methods.

[62]  S. Akira,et al.  TLR signaling. , 2006, Current topics in microbiology and immunology.

[63]  C. King,et al.  Higher Infection of Dengue Virus Serotype 2 in Human Monocytes of Patients with G6PD Deficiency , 2008, PloS one.

[64]  Tao Dong,et al.  Original antigenic sin and apoptosis in the pathogenesis of dengue hemorrhagic fever , 2003, Nature Medicine.

[65]  H. Bedouelle,et al.  Mapping to completeness and transplantation of a group-specific, discontinuous, neutralizing epitope in the envelope protein of dengue virus. , 2007, The Journal of general virology.

[66]  N. White,et al.  Susceptibility to dengue hemorrhagic fever in vietnam: evidence of an association with variation in the vitamin d receptor and Fc gamma receptor IIa genes. , 2002, The American journal of tropical medicine and hygiene.

[67]  D. Gubler,et al.  Emergence and Global Spread of a Dengue Serotype 3, Subtype III Virus , 2003, Emerging infectious diseases.

[68]  M. Guzmán,et al.  Dengue: an update. , 2002, The Lancet. Infectious diseases.

[69]  Robert Anderson,et al.  PrM- and Cell-Binding Domains of the Dengue Virus E Protein , 1999, Journal of Virology.

[70]  F. Ennis,et al.  Production of interferon alpha by dengue virus-infected human monocytes. , 1988, The Journal of general virology.

[71]  E. Azeredo,et al.  Characterisation of lymphocyte response and cytokine patterns in patients with dengue fever. , 2001, Immunobiology.

[72]  Robert Anderson,et al.  Release of Vasoactive Cytokines by Antibody-Enhanced Dengue Virus Infection of a Human Mast Cell/Basophil Line , 2000, Journal of Virology.

[73]  M. Crabtree,et al.  Deglycosylation of the NS1 protein of dengue 2 virus, strain 16681: Construction and characterization of mutant viruses , 2005, Archives of Virology.

[74]  C. Mandl,et al.  Cleavage of protein prM is necessary for infection of BHK-21 cells by tick-borne encephalitis virus. , 2003, The Journal of general virology.

[75]  A. Igarashi,et al.  Molecular and in vitro analysis of eight dengue type 2 viruses isolated from patients exhibiting different disease severities. , 1998, Virology.

[76]  A. Rothman,et al.  Understanding the contribution of cellular immunity to dengue disease pathogenesis , 2008, Immunological reviews.

[77]  A. Rothman,et al.  Altered Cytokine Responses of Dengue-Specific CD4+ T Cells to Heterologous Serotypes 1 , 2005, The Journal of Immunology.

[78]  C. Thepparit,et al.  Dengue virus entry into liver (HepG2) cells is independent of hsp90 and hsp70 , 2007, Journal of medical virology.

[79]  V. Stollar,et al.  Acidotropic amines inhibit proteolytic processing of flavivirus prM protein. , 1990, Virology.

[80]  A. Rothman T Lymphocyte Responses to Heterologous Secondary Dengue Virus Infections , 2009, Annals of the New York Academy of Sciences.

[81]  C. Villarreal-Garza,et al.  HLA-DR antigen frequencies in Mexican patients with dengue virus infection: HLA-DR4 as a possible genetic resistance factor for dengue hemorrhagic fever. , 2002, Human immunology.

[82]  T. Pierson,et al.  Maturation of West Nile Virus Modulates Sensitivity to Antibody-Mediated Neutralization , 2008, PLoS pathogens.

[83]  E. Azeredo,et al.  NK cells, displaying early activation, cytotoxicity and adhesion molecules, are associated with mild dengue disease , 2006, Clinical and experimental immunology.

[84]  N. Bhamarapravati,et al.  Replication of dengue-2 virus in Aedes albopictus mosquitoes. An electron microscopic study. , 1977, The American journal of tropical medicine and hygiene.

[85]  A. Davidson,et al.  Growth restriction of dengue virus type 2 by site-specific mutagenesis of virus-encoded glycoproteins. , 1998, The Journal of general virology.

[86]  G. Screaton,et al.  T cell responses and dengue haemorrhagic fever. , 2006, Novartis Foundation symposium.

[87]  H. Agaisse,et al.  Rab 5 Is Required for the Cellular Entry of Dengue and West Nile Viruses , 2007, Journal of Virology.

[88]  J. Richardson,et al.  Effect of mosquito midgut trypsin activity on dengue-2 virus infection and dissemination in Aedes aegypti. , 2005, The American journal of tropical medicine and hygiene.

[89]  R. Rico-Hesse,et al.  Origins of dengue type 2 viruses associated with increased pathogenicity in the Americas. , 1997, Virology.

[90]  Kevin R Porter,et al.  Functional characterization of ex vivo blood myeloid and plasmacytoid dendritic cells after infection with dengue virus. , 2009, Virology.

[91]  E. Harris,et al.  Early activation of natural killer and B cells in response to primary dengue virus infection in A/J mice. , 2004, Virology.

[92]  I. Sánchez-Vargas,et al.  Dengue virus type 2: replication and tropisms in orally infected Aedes aegypti mosquitoes , 2007, BMC Microbiology.

[93]  Samuel Ce Molecular mechanisms of interferon action: interferon-mediated phosphorylation of ribosome-associated protein P1 and protein synthesis initiation factor eIF-2. , 1981 .

[94]  Chi-Huey Wong,et al.  CLEC5A is critical for dengue-virus-induced lethal disease , 2008, Nature.

[95]  A. Nisalak,et al.  T Cell Responses to an HLA-B*07-Restricted Epitope on the Dengue NS3 Protein Correlate with Disease Severity1 , 2002, The Journal of Immunology.

[96]  A. Nisalak,et al.  A prospective study of dengue infections in Bangkok. , 1988, The American journal of tropical medicine and hygiene.

[97]  B. M. Kaufman,et al.  Monoclonal antibodies against dengue 2 virus E-glycoprotein protect mice against lethal dengue infection. , 1987, The American journal of tropical medicine and hygiene.

[98]  C. Samuel,et al.  Molecular mechanisms of interferon action: interferon-mediated phosphorylation of ribosome-associated protein P1 and protein synthesis initiation factor eIF-2. , 1981, Texas reports on biology and medicine.

[99]  Bjoern Peters,et al.  A Protective Role for Dengue Virus-Specific CD8+ T Cells 1 , 2009, The Journal of Immunology.

[100]  S. Harrison,et al.  The envelope glycoprotein from tick-borne encephalitis virus at 2 Å resolution , 1995, Nature.

[101]  Timothy S Baker,et al.  Conformational changes of the flavivirus E glycoprotein. , 2004, Structure.

[102]  P. Hilgard,et al.  Heparan sulfate proteoglycans initiate dengue virus infection of hepatocytes , 2000, Hepatology.

[103]  M. Cardosa,et al.  Antibodies against prM protein distinguish between previous infection with dengue and Japanese encephalitis viruses. , 2002, BMC Microbiology.

[104]  K. Wong,et al.  Localization of dengue virus in naturally infected human tissues, by immunohistochemistry and in situ hybridization. , 2004, The Journal of infectious diseases.

[105]  Y. Cheng,et al.  Anti-Prm Antibody as an Autoantibody in Dengue Virus Infection , 2008 .

[106]  S. Kalayanarooj,et al.  Genetic variations and relationship among dengue virus type 3 strains isolated from patients with mild or severe form of dengue disease in Indonesia and Thailand. , 2005, The Southeast Asian journal of tropical medicine and public health.

[107]  A. Barrett,et al.  Molecular and biological characterization of a non-glycosylated isolate of St Louis encephalitis virus. , 1993, The Journal of general virology.

[108]  J. Mascola,et al.  Human skin Langerhans cells are targets of dengue virus infection , 2000, Nature Medicine.

[109]  Z. Layrisse,et al.  TNF-alpha-308A allele, a possible severity risk factor of hemorrhagic manifestation in dengue fever patients. , 2004, Tissue antigens.

[110]  A. Rothman Cellular immunology of sequential dengue virus infection and its role in disease pathogenesis. , 2010, Current topics in microbiology and immunology.

[111]  G. Chang,et al.  Secretion of noninfectious dengue virus-like particles and identification of amino acids in the stem region involved in intracellular retention of envelope protein. , 2005, Virology.

[112]  Kuender D Yang,et al.  Combination of CTLA-4 and TGFbeta1 gene polymorphisms associated with dengue hemorrhagic fever and virus load in a dengue-2 outbreak. , 2009, Clinical Immunology.

[113]  W. Black,et al.  A dengue receptor as possible genetic marker of vector competence in Aedes aegypti , 2008, BMC Microbiology.

[114]  C. Mandl,et al.  Synthesis and secretion of recombinant tick-borne encephalitis virus protein E in soluble and particulate form , 1995, Journal of virology.

[115]  D. Fremont,et al.  A Therapeutic Antibody against West Nile Virus Neutralizes Infection by Blocking Fusion within Endosomes , 2009, PLoS pathogens.

[116]  E. Harris,et al.  Critical Roles for Both STAT1-Dependent and STAT1-Independent Pathways in the Control of Primary Dengue Virus Infection in Mice1 , 2005, The Journal of Immunology.

[117]  Eva Harris,et al.  Interferon-Dependent Immunity Is Essential for Resistance to Primary Dengue Virus Infection in Mice, Whereas T- and B-Cell-Dependent Immunity Are Less Critical , 2004, Journal of Virology.

[118]  A. Atrasheuskaya,et al.  Anti-TNF antibody treatment reduces mortality in experimental dengue virus infection. , 2003, FEMS immunology and medical microbiology.

[119]  V. Caviness,et al.  HEMORRHAGES INTO PERIPHERAL NERVES IN ASSOCIATION WITH LEUKEMIA. , 1964 .

[120]  J. Farrar,et al.  High Pro-Inflammatory Cytokine Secretion and Loss of High Avidity Cross-Reactive Cytotoxic T-Cells during the Course of Secondary Dengue Virus Infection , 2007, PloS one.

[121]  S. Halstead,et al.  Neutralization and antibody-dependent enhancement of dengue viruses. , 2003, Advances in virus research.

[122]  D. Vaughn,et al.  Dengue epidemiology: virus epidemiology, ecology, and emergence. , 2003, Advances in virus research.

[123]  B. Williams,et al.  Inhibition of cell-free protein synthesis by pppA2′ p5′ A2′ p5′ A: a novel oligonucleotide synthesized by interferon-treated L cell extracts , 1978, Cell.

[124]  B. Seliger,et al.  Dengue virus infection of human endothelial cells leads to chemokine production, complement activation, and apoptosis. , 1998, Journal of immunology.

[125]  A. McMichael,et al.  T Cell Responses in Dengue Hemorrhagic Fever: Are Cross-Reactive T Cells Suboptimal?1 , 2006, The Journal of Immunology.

[126]  Chun-Nan Lee,et al.  Human TLR3 recognizes dengue virus and modulates viral replication in vitro , 2009, Cellular microbiology.

[127]  Michael J Rust,et al.  Dissecting the Cell Entry Pathway of Dengue Virus by Single-Particle Tracking in Living Cells , 2008, PLoS pathogens.

[128]  A. Nisalak,et al.  Elevated plasma interleukin‐10 levels in acute dengue correlate with disease severity , 1999, Journal of medical virology.

[129]  H. Lortat-Jacob,et al.  Heparan sulfate-mediated binding of infectious dengue virus type 2 and yellow fever virus. , 2002, Virology.

[130]  Ting-Hsiang Lin,et al.  Dengue NS1‐specific antibody responses: Isotype distribution and serotyping in patients with dengue fever and dengue hemorrhagic fever , 2000, Journal of medical virology.

[131]  A. Issekutz,et al.  Activation of endothelial cells via antibody-enhanced dengue virus infection of peripheral blood monocytes , 1997, Journal of virology.

[132]  F. Heinz,et al.  Proteolytic activation of tick-borne encephalitis virus by furin , 1997, Journal of virology.

[133]  P. Desprès,et al.  Dendritic‐cell‐specific ICAM3‐grabbing non‐integrin is essential for the productive infection of human dendritic cells by mosquito‐cell‐derived dengue viruses , 2003, EMBO reports.

[134]  J. Smit,et al.  Functional importance of dengue virus maturation: infectious properties of immature virions. , 2008, The Journal of general virology.

[135]  A. Nisalak,et al.  HLA-A and -B allele associations with secondary dengue virus infections correlate with disease severity and the infecting viral serotype in ethnic Thais. , 2002, Tissue antigens.

[136]  T. Oliphant,et al.  Structural basis of West Nile virus neutralization by a therapeutic antibody , 2005, Nature.

[137]  S. Nimmannitya,et al.  Nutritional status of children with dengue hemorrhagic fever. , 1993, Clinical infectious diseases : an official publication of the Infectious Diseases Society of America.

[138]  J. Schlesinger,et al.  Protection of mice against dengue 2 virus encephalitis by immunization with the dengue 2 virus non-structural glycoprotein NS1. , 1987, The Journal of general virology.

[139]  D. Burke,et al.  Epitopic analysis of antigenic determinants on the surface of dengue-2 virions using monoclonal antibodies. , 1985, The American journal of tropical medicine and hygiene.

[140]  Anita Chakravarti,et al.  Circulating levels of tumour necrosis factor-alpha & interferon-gamma in patients with dengue & dengue haemorrhagic fever during an outbreak. , 2006, The Indian journal of medical research.

[141]  M. Ng,et al.  Infectious Entry of West Nile Virus Occurs through a Clathrin-Mediated Endocytic Pathway , 2004, Journal of Virology.

[142]  Wei Zhang,et al.  Structure of the Immature Dengue Virus at Low pH Primes Proteolytic Maturation , 2008, Science.

[143]  Anavaj Sakuntabhai,et al.  A variant in the CD209 promoter is associated with severity of dengue disease , 2005, Nature Genetics.

[144]  R. D. del Ángel,et al.  Heat Shock Protein 90 and Heat Shock Protein 70 Are Components of Dengue Virus Receptor Complex in Human Cells , 2005, Journal of Virology.

[145]  D. Burke,et al.  Monoclonal antibodies for dengue virus prM glycoprotein protect mice against lethal dengue infection. , 1989, The American journal of tropical medicine and hygiene.

[146]  A. Nisalak,et al.  High circulating levels of the dengue virus nonstructural protein NS1 early in dengue illness correlate with the development of dengue hemorrhagic fever. , 2002, The Journal of infectious diseases.

[147]  R. Rico-Hesse,et al.  Dengue Virus Structural Differences That Correlate with Pathogenesis , 1999, Journal of Virology.

[148]  J. V. D. van der Meer,et al.  Cytokine patterns during dengue shock syndrome. , 2003, European cytokine network.

[149]  A. Igarashi,et al.  Sequences of Terminal Non-Coding Regions from Four Dengue-2 Viruses Isolated from Patients Exhibiting Different Disease Severities , 2004, Virus Genes.

[150]  B. Pandey,et al.  Severity‐Related Molecular Differences among Nineteen Strains of Dengue Type 2 Viruses , 2000, Microbiology and immunology.

[151]  Pei-Yong Shi,et al.  NS5 of Dengue Virus Mediates STAT2 Binding and Degradation , 2009, Journal of Virology.

[152]  F. Heinz,et al.  Flavivirus structure and membrane fusion. , 2003, Advances in virus research.

[153]  A. Ong,et al.  Fatal dengue hemorrhagic fever in adults during a dengue epidemic in Singapore. , 2007, International journal of infectious diseases : IJID : official publication of the International Society for Infectious Diseases.

[154]  F. Ennis,et al.  HUMAN IgG FC RECEPTOR I 1 MEDIATES ANTIBODY-DEPENDENT ENHANCEMENT OF DENGUE VIRUS INFECTION ' , 2001 .

[155]  M. Guzmán,et al.  Dengue haemorrhagic fever/dengue shock syndrome: lessons from the Cuban epidemic, 1981. , 1989, Bulletin of the World Health Organization.

[156]  E. Harris,et al.  Murine Model for Dengue Virus-Induced Lethal Disease with IncreasedVascular Permeability , 2006, Journal of Virology.

[157]  S. McWilliam,et al.  NS 1 gene sequences from eight dengue-2 viruses and their evolutionary relationships with other dengue-2 viruses , 2005, Archives of Virology.

[158]  Susana Vázquez,et al.  Enhanced severity of secondary dengue-2 infections: death rates in 1981 and 1997 Cuban outbreaks. , 2002, Revista panamericana de salud publica = Pan American journal of public health.

[159]  A. Nisalak,et al.  Antibodies that block virus attachment to vero cells are a major component of the human neutralizing antibody response against dengue virus type 2 , 1995, Journal of medical virology.

[160]  J. Schlesinger,et al.  Synergistic interactions of anti-NS1 monoclonal antibodies protect passively immunized mice from lethal challenge with dengue 2 virus. , 1988, The Journal of general virology.

[161]  P. J. Wright,et al.  Glycosylation mutants of dengue virus NS1 protein. , 1994, The Journal of general virology.

[162]  J. Salas-Benito,et al.  A putative receptor for dengue virus in mosquito tissues: localization of a 45-kDa glycoprotein. , 2002, The American journal of tropical medicine and hygiene.

[163]  J. Roehrig,et al.  Enhancing biosynthesis and secretion of premembrane and envelope proteins by the chimeric plasmid of dengue virus type 2 and Japanese encephalitis virus. , 2003, Virology.

[164]  F. Rey,et al.  Virus membrane-fusion proteins: more than one way to make a hairpin , 2006, Nature Reviews Microbiology.

[165]  M. Nawa Development of a New Cell System for the Infectivity Assay of Dengue Viruses: Plaque Formation and Virus Growth of Prototype and Wild‐Type Dengue Virus Strains in a Newly Established Cell Line, GK , 1984, Microbiology and immunology.

[166]  S. Halstead,et al.  Observations related to pathogenesis of dengue hemorrhagic fever. 3. Virologic studies of fatal disease. , 1970, The Yale journal of biology and medicine.

[167]  W. Messer,et al.  Severe Dengue Epidemics in Sri Lanka, 2003–2006 , 2009, Emerging infectious diseases.

[168]  Carol Beth Post,et al.  Solution structure of dengue virus capsid protein reveals another fold. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[169]  N. White,et al.  Strong HLA class I--restricted T cell responses in dengue hemorrhagic fever: a double-edged sword? , 2001, The Journal of infectious diseases.

[170]  Michael J Rust,et al.  Characterization of the Early Events in Dengue Virus Cell Entry by Biochemical Assays and Single-Virus Tracking , 2007, Journal of Virology.

[171]  S. Halstead,et al.  Haiti: absence of dengue hemorrhagic fever despite hyperendemic dengue virus transmission. , 2001, The American journal of tropical medicine and hygiene.

[172]  F. Sanchez-Garcia,et al.  Susceptibility of Mouse Macrophage J774 to Dengue Virus Infection , 2007, Intervirology.

[173]  G. Foster,et al.  Dengue Virus Inhibits Alpha Interferon Signaling by Reducing STAT2 Expression , 2005, Journal of Virology.

[174]  J. Roehrig,et al.  Monoclonal antibody mapping of the envelope glycoprotein of the dengue 2 virus, Jamaica. , 1998, Virology.

[175]  J. Roehrig,et al.  New Mouse Model for Dengue Virus Vaccine Testing , 1999, Journal of Virology.

[176]  A. Nisalak,et al.  Evidence that maternal dengue antibodies are important in the development of dengue hemorrhagic fever in infants. , 1988, The American journal of tropical medicine and hygiene.

[177]  D. Hober,et al.  Serum Levels of Tumor Necrosis Factor-α (TNF-α), Interleukin-6 (IL-6), and Interleukin-1β (IL-1β) in Dengue-Infected Patients , 1993 .

[178]  S. H. Wang,et al.  The heterogeneous nuclear ribonucleoprotein K (hnRNP K) interacts with dengue virus core protein. , 2001, DNA and cell biology.

[179]  Nikos Vasilakis,et al.  Molecular evolution of dengue viruses: contributions of phylogenetics to understanding the history and epidemiology of the preeminent arboviral disease. , 2009, Infection, genetics and evolution : journal of molecular epidemiology and evolutionary genetics in infectious diseases.

[180]  E. Damonte,et al.  Alternative infectious entry pathways for dengue virus serotypes into mammalian cells , 2009, Cellular microbiology.

[181]  J. Smit,et al.  Immature Dengue Virus: A Veiled Pathogen? , 2010, PLoS pathogens.

[182]  M. Rossmann,et al.  Cryo-EM Reconstruction of Dengue Virus in Complex with the Carbohydrate Recognition Domain of DC-SIGN , 2006, Cell.

[183]  R. Jarman,et al.  Phenotypic analysis of dengue virus isolates associated with dengue fever and dengue hemorrhagic fever for cellular attachment, replication and interferon signaling ability. , 2009, Virus research.

[184]  D. Chang,et al.  Dengue virus type 2 antagonizes IFN-alpha but not IFN-gamma antiviral effect via down-regulating Tyk2-STAT signaling in the human dendritic cell. , 2005, Journal of immunology.

[185]  M. Hibberd,et al.  Dengue virus regulates type I interferon signalling in a strain-dependent manner in human cell lines. , 2008, The Journal of general virology.

[186]  Y. L. Lin,et al.  Involvement of oxidative stress, NF-IL-6, and RANTES expression in dengue-2-virus-infected human liver cells. , 2000, Virology.

[187]  A. Sher,et al.  Cooperation of Toll-like receptor signals in innate immune defence , 2007, Nature Reviews Immunology.

[188]  M. Bray,et al.  Dengue virus premembrane and membrane proteins elicit a protective immune response. , 1991, Virology.

[189]  R M Zinkernagel,et al.  Peptide antigen treatment of naive and virus-immune mice: antigen-specific tolerance versus immunopathology. , 1997, Immunity.

[190]  G. Chang,et al.  Antibodies to Envelope Glycoprotein of Dengue Virus during the Natural Course of Infection Are Predominantly Cross-Reactive and Recognize Epitopes Containing Highly Conserved Residues at the Fusion Loop of Domain II , 2008, Journal of Virology.

[191]  Wei Zhang,et al.  Structure of Dengue Virus Implications for Flavivirus Organization, Maturation, and Fusion , 2002, Cell.

[192]  S. Halstead,et al.  Dengue Viruses and Mononuclear Phagocytes , 2003 .

[193]  C. Huang,et al.  Glycosylation of the dengue 2 virus E protein at N67 is critical for virus growth in vitro but not for growth in intrathoracically inoculated Aedes aegypti mosquitoes. , 2007, Virology.

[194]  M. Rossmann,et al.  Structure of Immature West Nile Virus , 2007, Journal of Virology.

[195]  E. Damonte,et al.  Functional entry of dengue virus into Aedes albopictus mosquito cells is dependent on clathrin-mediated endocytosis. , 2008, The Journal of general virology.

[196]  C. King,et al.  Bacterial Lipopolysaccharide Inhibits Dengue Virus Infection of Primary Human Monocytes/Macrophages by Blockade of Virus Entry via a CD14-Dependent Mechanism , 1999, Journal of Virology.

[197]  Soila Sukupolvi-Petty,et al.  On a mouse monoclonal antibody that neutralizes all four dengue virus serotypes. , 2009, The Journal of general virology.

[198]  Ying Zhang,et al.  Structures of immature flavivirus particles , 2003, The EMBO journal.

[199]  P. Puthavathana,et al.  Role of Dendritic Cells in Antibody-Dependent Enhancement of Dengue Virus Infection , 2008, Journal of Virology.

[200]  G. Nybakken,et al.  Structural basis for the preferential recognition of immature flaviviruses by a fusion‐loop antibody , 2009, The EMBO journal.

[201]  A. Ling,et al.  Retrospective study of western blot profiles in immune sera of natural dengue virus infections , 1999, Journal of medical virology.

[202]  Pieter H. Reitsma,et al.  Differential Gene Expression Changes in Children with Severe Dengue Virus Infections , 2008, PLoS neglected tropical diseases.

[203]  E. Harris,et al.  Molecular biology of flaviviruses. , 2006, Novartis Foundation symposium.

[204]  P. Desprès,et al.  Dendritic Cell-specific Intercellular Adhesion Molecule 3-grabbing Non-integrin (DC-SIGN)-mediated Enhancement of Dengue Virus Infection Is Independent of DC-SIGN Internalization Signals* , 2005, Journal of Biological Chemistry.

[205]  Phyllis Kanki,et al.  HLA-A, -B, -C, and -DRB1 allele frequencies in Cuban individuals with antecedents of dengue 2 disease: advantages of the Cuban population for HLA studies of dengue virus infection. , 2007, Human immunology.

[206]  A. Kanjanahaluethai,et al.  Differential Modulation of prM Cleavage, Extracellular Particle Distribution, and Virus Infectivity by Conserved Residues at Nonfurin Consensus Positions of the Dengue Virus pr-M Junction , 2008, Journal of Virology.

[207]  S. Kalayanarooj,et al.  Dengue virus (DENV) antibody-dependent enhancement of infection upregulates the production of anti-inflammatory cytokines, but suppresses anti-DENV free radical and pro-inflammatory cytokine production, in THP-1 cells. , 2007, The Journal of general virology.

[208]  K. Stiasny,et al.  Membrane Interactions of the Tick-Borne Encephalitis Virus Fusion Protein E at Low pH , 2002, Journal of Virology.

[209]  R. M. Scott,et al.  Histocompatibility antigens and dengue hemorrhagic fever. , 1981, American Journal of Tropical Medicine and Hygiene.