The tanh and the sine–cosine methods for exact solutions of the MBBM and the Vakhnenko equations

Abstract In this paper, we establish exact solutions for nonlinear evolution equations. The tanh and sine–cosine methods are used to construct exact periodic and soliton solutions of nonlinear evolution equations. Many new families of exact travelling wave solutions of the Vakhnenko and modified Benjamin–Bona–Mahony (MBBM) equations are successfully obtained. The obtained solutions include solitons, solitary and periodic solutions. These solutions may be important of significance for the explanation of some practical physical problems.

[1]  A. H. Khater,et al.  The tanh method, a simple transformation and exact analytical solutions for nonlinear reaction-diffusion equations , 2002 .

[2]  Ahmet Bekir,et al.  Exact solutions of coupled nonlinear evolution equations , 2008 .

[3]  Abdul-Majid Wazwaz,et al.  The sine-cosine method for obtaining solutions with compact and noncompact structures , 2004, Appl. Math. Comput..

[4]  M. A. Abdou,et al.  Modified extended tanh-function method for solving nonlinear partial differential equations , 2007 .

[5]  Abdul-Majid Wazwaz,et al.  The tanh method: exact solutions of the sine-Gordon and the sinh-Gordon equations , 2005, Appl. Math. Comput..

[6]  Abdul-Majid Wazwaz,et al.  Two reliable methods for solving variants of the KdV equation with compact and noncompact structures , 2006 .

[7]  E. Fan,et al.  A note on the homogeneous balance method , 1998 .

[8]  Zhenya Yan,et al.  Constructing exact solutions for two-dimensional nonlinear dispersion Boussinesq equation. II: Solitary pattern solutions , 2003 .

[9]  Abdul-Majid Wazwaz,et al.  New compactons, solitons and periodic solutions for nonlinear variants of the KdV and the KP equations , 2004 .

[10]  M. Wadati,et al.  The Exact Solution of the Modified Korteweg-de Vries Equation , 1972 .

[11]  W. Malfliet Solitary wave solutions of nonlinear wave equations , 1992 .

[12]  M. Wadati,et al.  The Modified Korteweg-de Vries Equation , 1973 .

[13]  Abdul-Majid Wazwaz,et al.  The tan h method: solitons and periodic solutions for the Dodd–Bullough–Mikhailov and the Tzitzeica–Dodd–Bullough equations , 2005 .

[14]  A. Wazwaz,et al.  Nonlinear variants of the BBM equation with compact and noncompact physical structures , 2005 .

[15]  Ahmet Bekir,et al.  Periodic and solitary wave solutions of Kawahara and modified Kawahara equations by using Sine–Cosine method , 2008 .

[16]  Abdul-Majid Wazwaz,et al.  A sine-cosine method for handlingnonlinear wave equations , 2004, Math. Comput. Model..

[17]  Ryogo Hirota,et al.  Direct method of finding exact solutions of nonlinear evolution equations , 1976 .

[18]  E. Fan,et al.  Extended tanh-function method and its applications to nonlinear equations , 2000 .

[19]  Engui Fan,et al.  Generalized tanh Method Extended to Special Types of Nonlinear Equations , 2002 .

[20]  E. J. Parkes,et al.  The calculation of multi-soliton solutions of the Vakhnenko equation by the inverse scattering method , 2002 .

[21]  M. A. Abdou,et al.  New exact travelling wave solutions using modified extended tanh-function method , 2007 .

[22]  E. J. Parkes,et al.  A Backlund transformation and the inverse scattering transform method for the generalised Vakhnenko equation , 2003 .

[23]  Zhenya Yan,et al.  Abundant families of Jacobi elliptic function solutions of the (2+1)-dimensional integrable Davey–Stewartson-type equation via a new method , 2003 .

[24]  J. Bona,et al.  Model equations for long waves in nonlinear dispersive systems , 1972, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences.

[25]  M. Wadati Introduction to solitons , 2001 .

[26]  E J Parkes,et al.  The two loop soliton solution of the Vakhnenko equation , 1998 .