3D Metric-based anisotropic mesh adaptation for vortex capture
暂无分享,去创建一个
[1] J. Dompierre,et al. Numerical comparison of some Hessian recovery techniques , 2007 .
[2] S. Leibovich,et al. Disrupted states of vortex flow and vortex breakdown , 1977 .
[3] Joel H. Ferziger,et al. Computational methods for fluid dynamics , 1996 .
[4] Jens Lang,et al. A new anisotropic mesh adaptation method based upon hierarchical a posteriori error estimates , 2010, J. Comput. Phys..
[5] Gerd Kunert,et al. An a posteriori residual error estimator for the finite element method on anisotropic tetrahedral meshes , 2000, Numerische Mathematik.
[6] Jinhee Jeong,et al. On the identification of a vortex , 1995, Journal of Fluid Mechanics.
[7] G. Batchelor,et al. Axial flow in trailing line vortices , 1964, Journal of Fluid Mechanics.
[8] Simona Perotto,et al. An anisotropic recovery-based a posteriori error estimator , 2003 .
[9] Weizhang Huang,et al. Metric tensors for anisotropic mesh generation , 2005 .
[10] M. Fortin,et al. Anisotropic mesh adaptation: towards user‐independent, mesh‐independent and solver‐independent CFD. Part I: general principles , 2000 .
[11] Thomas Huld,et al. Solution adaptive grids applied to low Reynolds number flow , 2003 .
[12] Pascal Frey,et al. Anisotropic mesh adaptation for CFD computations , 2005 .
[13] M. Picasso. Numerical study of the effectivity index for an anisotropic error indicator based on Zienkiewicz–Zhu error estimator , 2002 .
[14] Marco Picasso,et al. Adaptive finite elements with large aspect ratio based on an anisotropic error estimator involving first order derivatives , 2006 .
[15] Philippe Dupont,et al. Comparison between tip vortex development calculations and measurements on an elliptic hydrofoil , 1992 .
[16] M. Fortin,et al. Anisotropic mesh adaptation: towards user‐independent, mesh‐independent and solver‐independent CFD. Part II. Structured grids , 2002 .
[17] Frédéric Hecht,et al. MESH GRADATION CONTROL , 1998 .
[18] Frédéric Alauzet,et al. Fully anisotropic goal-oriented mesh adaptation for 3D steady Euler equations , 2010, J. Comput. Phys..
[19] O. C. Zienkiewicz,et al. A simple error estimator and adaptive procedure for practical engineerng analysis , 1987 .
[20] Rolf Stenberg,et al. Numerical Mathematics and Advanced Applications ENUMATH 2017 , 2019, Lecture Notes in Computational Science and Engineering.
[21] D. Degani,et al. Graphical visualization of vortical flows by means of helicity , 1990 .
[22] François Guibault,et al. An analysis of simplex shape measures for anisotropic meshes , 2005 .
[23] Frédéric Alauzet,et al. Estimateur d'erreur géométrique et métriques anisotropes pour l'adaptation de maillage: Partie II : exemples d'applications , 2003 .
[24] L. Formaggia,et al. Anisotropic mesh adaptation in computational fluid dynamics: application to the advection-diffusion-reaction and the Stokes problems , 2004 .
[25] Frédéric Hecht,et al. Anisotropic unstructured mesh adaption for flow simulations , 1997 .
[26] Jean-François Remacle,et al. Anisotropic Mesh Gradation Control , 2004, IMR.
[27] F. Alauzet,et al. Continuous Mesh Model and Well-Posed Continuous Interpolation Error Estimation , 2009 .
[28] Simona Perotto,et al. New anisotropic a priori error estimates , 2001, Numerische Mathematik.
[29] D. Venditti,et al. Anisotropic grid adaptation for functional outputs: application to two-dimensional viscous flows , 2003 .
[30] Marco Picasso,et al. An Anisotropic Error Indicator Based on Zienkiewicz-Zhu Error Estimator: Application to Elliptic and Parabolic Problems , 2002, SIAM J. Sci. Comput..
[31] Rolf Rannacher,et al. A Feed-Back Approach to Error Control in Finite Element Methods: Basic Analysis and Examples , 1996 .
[32] M. Piggott,et al. A POD goal‐oriented error measure for mesh optimization , 2009 .
[33] Gerd Kunert. A posteriori L2 error estimation on anisotropic tetrahedral finite element meshes , 2001 .
[34] Michael B. Giles,et al. Improved- lift and drag estimates using adjoint Euler equations , 1999 .
[35] Dissipation of vortices in CFD‐simulations , 2003 .
[36] Simona Perotto,et al. Reliability and efficiency of an anisotropic zienkiewicz-zhu error estimator , 2006 .
[37] Y. Vassilevski,et al. Hessian-free metric-based mesh adaptation via geometry of interpolation error , 2010 .
[38] James Newman,et al. Comparison of adjoint‐based and feature‐based grid adaptation for functional outputs , 2006 .
[39] Simona Perotto,et al. Anisotropic error estimates for elliptic problems , 2003, Numerische Mathematik.
[40] Frédéric Alauzet,et al. On the use of anisotropic a posteriori error estimators for the adaptative solution of 3D inviscid compressible flows , 2009 .
[41] Informatics T. A. HuldInstitute for Systems. Solution adaptive grids applied to low Reynolds number flow , 2003 .
[42] Zhimin Zhang,et al. A New Finite Element Gradient Recovery Method: Superconvergence Property , 2005, SIAM J. Sci. Comput..