3D Metric-based anisotropic mesh adaptation for vortex capture

Abstract: A mesh adaptation procedure is presented to capture a tip vortex in a CFD calculation. The objective is to reduce the numerical diffusion by refining the mesh in the vortex core and coarsen it away from its center. The error estimator of the adaptation scheme is based on the Hessian of a scalar field. The sum of the original vorticity and a transported vorticity is used to calculate the Hessian. The transported vorticity is calculated as a separate equation, which has no influence on the flow computation. To assess the quality of the process, a laminar test case is studied.

[1]  J. Dompierre,et al.  Numerical comparison of some Hessian recovery techniques , 2007 .

[2]  S. Leibovich,et al.  Disrupted states of vortex flow and vortex breakdown , 1977 .

[3]  Joel H. Ferziger,et al.  Computational methods for fluid dynamics , 1996 .

[4]  Jens Lang,et al.  A new anisotropic mesh adaptation method based upon hierarchical a posteriori error estimates , 2010, J. Comput. Phys..

[5]  Gerd Kunert,et al.  An a posteriori residual error estimator for the finite element method on anisotropic tetrahedral meshes , 2000, Numerische Mathematik.

[6]  Jinhee Jeong,et al.  On the identification of a vortex , 1995, Journal of Fluid Mechanics.

[7]  G. Batchelor,et al.  Axial flow in trailing line vortices , 1964, Journal of Fluid Mechanics.

[8]  Simona Perotto,et al.  An anisotropic recovery-based a posteriori error estimator , 2003 .

[9]  Weizhang Huang,et al.  Metric tensors for anisotropic mesh generation , 2005 .

[10]  M. Fortin,et al.  Anisotropic mesh adaptation: towards user‐independent, mesh‐independent and solver‐independent CFD. Part I: general principles , 2000 .

[11]  Thomas Huld,et al.  Solution adaptive grids applied to low Reynolds number flow , 2003 .

[12]  Pascal Frey,et al.  Anisotropic mesh adaptation for CFD computations , 2005 .

[13]  M. Picasso Numerical study of the effectivity index for an anisotropic error indicator based on Zienkiewicz–Zhu error estimator , 2002 .

[14]  Marco Picasso,et al.  Adaptive finite elements with large aspect ratio based on an anisotropic error estimator involving first order derivatives , 2006 .

[15]  Philippe Dupont,et al.  Comparison between tip vortex development calculations and measurements on an elliptic hydrofoil , 1992 .

[16]  M. Fortin,et al.  Anisotropic mesh adaptation: towards user‐independent, mesh‐independent and solver‐independent CFD. Part II. Structured grids , 2002 .

[17]  Frédéric Hecht,et al.  MESH GRADATION CONTROL , 1998 .

[18]  Frédéric Alauzet,et al.  Fully anisotropic goal-oriented mesh adaptation for 3D steady Euler equations , 2010, J. Comput. Phys..

[19]  O. C. Zienkiewicz,et al.  A simple error estimator and adaptive procedure for practical engineerng analysis , 1987 .

[20]  Rolf Stenberg,et al.  Numerical Mathematics and Advanced Applications ENUMATH 2017 , 2019, Lecture Notes in Computational Science and Engineering.

[21]  D. Degani,et al.  Graphical visualization of vortical flows by means of helicity , 1990 .

[22]  François Guibault,et al.  An analysis of simplex shape measures for anisotropic meshes , 2005 .

[23]  Frédéric Alauzet,et al.  Estimateur d'erreur géométrique et métriques anisotropes pour l'adaptation de maillage: Partie II : exemples d'applications , 2003 .

[24]  L. Formaggia,et al.  Anisotropic mesh adaptation in computational fluid dynamics: application to the advection-diffusion-reaction and the Stokes problems , 2004 .

[25]  Frédéric Hecht,et al.  Anisotropic unstructured mesh adaption for flow simulations , 1997 .

[26]  Jean-François Remacle,et al.  Anisotropic Mesh Gradation Control , 2004, IMR.

[27]  F. Alauzet,et al.  Continuous Mesh Model and Well-Posed Continuous Interpolation Error Estimation , 2009 .

[28]  Simona Perotto,et al.  New anisotropic a priori error estimates , 2001, Numerische Mathematik.

[29]  D. Venditti,et al.  Anisotropic grid adaptation for functional outputs: application to two-dimensional viscous flows , 2003 .

[30]  Marco Picasso,et al.  An Anisotropic Error Indicator Based on Zienkiewicz-Zhu Error Estimator: Application to Elliptic and Parabolic Problems , 2002, SIAM J. Sci. Comput..

[31]  Rolf Rannacher,et al.  A Feed-Back Approach to Error Control in Finite Element Methods: Basic Analysis and Examples , 1996 .

[32]  M. Piggott,et al.  A POD goal‐oriented error measure for mesh optimization , 2009 .

[33]  Gerd Kunert A posteriori L2 error estimation on anisotropic tetrahedral finite element meshes , 2001 .

[34]  Michael B. Giles,et al.  Improved- lift and drag estimates using adjoint Euler equations , 1999 .

[35]  Dissipation of vortices in CFD‐simulations , 2003 .

[36]  Simona Perotto,et al.  Reliability and efficiency of an anisotropic zienkiewicz-zhu error estimator , 2006 .

[37]  Y. Vassilevski,et al.  Hessian-free metric-based mesh adaptation via geometry of interpolation error , 2010 .

[38]  James Newman,et al.  Comparison of adjoint‐based and feature‐based grid adaptation for functional outputs , 2006 .

[39]  Simona Perotto,et al.  Anisotropic error estimates for elliptic problems , 2003, Numerische Mathematik.

[40]  Frédéric Alauzet,et al.  On the use of anisotropic a posteriori error estimators for the adaptative solution of 3D inviscid compressible flows , 2009 .

[41]  Informatics T. A. HuldInstitute for Systems Solution adaptive grids applied to low Reynolds number flow , 2003 .

[42]  Zhimin Zhang,et al.  A New Finite Element Gradient Recovery Method: Superconvergence Property , 2005, SIAM J. Sci. Comput..