Local minimizers for variational obstacle avoidance on Riemannian manifolds

This paper studies a variational obstacle avoidance problem on complete Riemannian manifolds. That is, we minimize an action functional, among a set of admissible curves, which depends on an artificial potential function used to avoid obstacles. In particular, we generalize the theory of biJacobi fields and biconjugate points and present necessary and sufficient conditions for optimality. Local minimizers of the action functional are divided into two categories—called &-local minimizers and Ω-local minimizers—and subsequently classified, with local uniqueness results obtained in both cases.

[1]  R. Giambò,et al.  An analytical theory for Riemannian cubic polynomials , 2002 .

[2]  Leonardo Colombo,et al.  A geometric approach to the optimal control of nonholnomic mechanical systems , 2014, 1410.5682.

[3]  Jesse Freeman,et al.  in Morse theory, , 1999 .

[4]  Margarida Camarinha,et al.  Variational point-obstacle avoidance on Riemannian manifolds , 2019, Mathematics of Control, Signals, and Systems.

[5]  W. Boothby An introduction to differentiable manifolds and Riemannian geometry , 1975 .

[6]  P. Crouch,et al.  Splines of class Ck on non-euclidean spaces , 1995 .

[7]  P. Crouch,et al.  The dynamic interpolation problem: On Riemannian manifolds, Lie groups, and symmetric spaces , 1995 .

[8]  Lyle Noakes,et al.  Cubic Splines on Curved Spaces , 1989 .

[9]  L. Machado,et al.  Higher-order smoothing splines versus least squares problems on Riemannian manifolds , 2010 .

[10]  Rama Seshan Chandrasekaran,et al.  Variational collision and obstacle avoidance of multi-agent systems on Riemannian manifolds , 2019, 2020 European Control Conference (ECC).

[11]  A. Bloch,et al.  Neighboring extremal optimal control for mechanical systems on Riemannian manifolds , 2016 .

[12]  Leonardo Colombo,et al.  A Decentralized Strategy for Variational Collision Avoidance on Complete Riemannian Manifolds , 2020 .

[13]  P. Crouch,et al.  Existence and Uniqueness for Riemannian Cubics with Boundary Conditions , 2020 .

[14]  Jacob R. Goodman,et al.  Variational Collision Avoidance on Riemannian Manifolds , 2021, ArXiv.

[15]  Fabio Giannoni,et al.  Optimal Control on Riemannian Manifolds by Interpolation , 2004, Math. Control. Signals Syst..

[16]  A. Bloch,et al.  Dynamic interpolation on Riemannian manifolds: an application to interferometric imaging , 2004, Proceedings of the 2004 American Control Conference.

[17]  Jacob R. Goodman,et al.  Variational Obstacle Avoidance with Applications to Interpolation Problems in Hybrid Systems , 2021, IFAC-PapersOnLine.

[18]  J. Jost Riemannian geometry and geometric analysis , 1995 .

[19]  R. Olfati-Saber,et al.  Collision avoidance for multiple agent systems , 2003, 42nd IEEE International Conference on Decision and Control (IEEE Cat. No.03CH37475).

[20]  Leonardo Colombo,et al.  Variational obstacle avoidance problem on riemannian manifolds , 2017, 2017 IEEE 56th Annual Conference on Decision and Control (CDC).

[21]  P. Alam,et al.  R , 1823, The Herodotus Encyclopedia.

[22]  Benedikt Wirth,et al.  Optimization Methods on Riemannian Manifolds and Their Application to Shape Space , 2012, SIAM J. Optim..

[23]  F. Silva Leite,et al.  Geometry and the Dynamic Interpolation Problem , 1991, 1991 American Control Conference.

[24]  D. Koditschek,et al.  Robot navigation functions on manifolds with boundary , 1990 .

[25]  Leonardo Colombo,et al.  Variational collision avoidance problems on Riemannian manifolds , 2018, 2018 IEEE Conference on Decision and Control (CDC).

[26]  Leonardo Colombo,et al.  Dynamic interpolation for obstacle avoidance on Riemannian manifolds , 2018, Int. J. Control.

[27]  P. Crouch,et al.  On the geometry of Riemannian cubic polynomials , 2001 .