Deposition of a newly identified Mesoproterozoic iron formation from the Dabie orogen: Influenced by high-T hydrothermal fluid and redox stratification

[1]  San-zhong Li,et al.  The source and depositional environment of early Silurian iron formation in NW China: Constraints from element and isotope (Fe, C, O) geochemistry , 2022, Ore Geology Reviews.

[2]  San-zhong Li,et al.  Trace element and isotope (C, S, Sr, Nd, Fe) geochemistry constraints on the sedimentary environment of the early Neoproterozoic Shilu BIF and associated dolostones, South China , 2022, Precambrian Research.

[3]  D. Canfield,et al.  Isotope evidence for the coupled iron and carbon cycles 1.4 billion years ago , 2022, Geochemical Perspectives Letters.

[4]  Dapeng Li,et al.  A transient oxygen increase in the Mesoproterozoic ocean at ∼1.44 Ga: Geochemical evidence from the Tieling Formation, North China Platform , 2022, Precambrian Research.

[5]  V. Balaram,et al.  Recent advances in MC-ICP-MS applications in Earth and environmental sciences: Challenges and solutions , 2021, Geosystems and Geoenvironment.

[6]  Fengli Yang,et al.  Neoproterozoic extensional basins and its control on the distribution of hydrocarbon source rocks in the Yangtze Craton, South China , 2021, Geosystems and Geoenvironment.

[7]  Chaojin Lu,et al.  Tracing seawater- and terrestrial-sourced REE signatures in detritally contaminated, diagenetically altered carbonate rocks , 2021, Chemical Geology.

[8]  B. Rasmussen,et al.  Greenalite and its role in the genesis of early Precambrian iron formations – A review , 2021, Earth-Science Reviews.

[9]  Linda C. Kah,et al.  A persistently low level of atmospheric oxygen in Earth’s middle age , 2021, Nature Communications.

[10]  Zuoheng Zhang,et al.  Episodic ferruginous conditions associated with submarine volcanism led to the deposition of a Late Carboniferous iron formation , 2021 .

[11]  N. U. Khattak,et al.  Reworking of Hadean continental crust in the Dabie orogen: Evidence from the Muzidian granitic gneisses , 2021 .

[12]  Jun Hu,et al.  U-Pb zircon geochronology and geochemistry of metavolcanics and associated iron ores of the magnetite-rich BIF deposits in the Western Kunlun orogenic belt: Constraints on the depositional age, origin and tectonic setting , 2020 .

[13]  S. Lalonde,et al.  Post-depositional REE mobility in a Paleoarchean banded iron formation revealed by La-Ce geochronology: A cautionary tale for signals of ancient oxygenation , 2020, Earth and Planetary Science Letters.

[14]  M. Steele-MacInnis,et al.  A fundamental role of carbonate–sulfate melts in the formation of iron oxide–apatite deposits , 2020, Nature Geoscience.

[15]  Jun Hu,et al.  A rare earth element and Nd isotopic investigation into the provenance and deposition of the Dahongliutan banded iron formation and associated carbonates, NW China: Implications on Neoproterozoic seawater compositions , 2020 .

[16]  Xiaoying Shi,et al.  Mesoproterozoic oxygenated deep seawater recorded by early diagenetic carbonate concretions from the Member IV of the Xiamaling Formation, North China , 2020 .

[17]  Yu Zhang,et al.  Rare earth elements and carbon-oxygen isotopes of calcite from the Tongjiachong Cu deposit, South China: Implications for fluid source and mineral precipitation , 2020 .

[18]  Xiaoying Shi,et al.  A pulse of oxygen increase in the early Mesoproterozoic ocean at ca. 1.57–1.56 Ga , 2019, Earth and Planetary Science Letters.

[19]  T. Zhao,et al.  In-site mineral geochemistry and whole-rock Fe isotopes of the quartz-magnetite-pyroxene rocks in the Wuyang area, North China Craton: Constraints on the genesis of the pyroxene-rich BIF , 2019, Precambrian Research.

[20]  T. Lyons,et al.  Evaluating the fidelity of the cerium paleoredox tracer during variable carbonate diagenesis on the Great Bahamas Bank , 2019, Geochimica et Cosmochimica Acta.

[21]  T. Zhao,et al.  Geochemistry, U-Pb zircon geochronology and Sm-Nd isotopes of the Xincai banded iron formation in the southern margin of the North China Craton: Implications on Neoarchean seawater compositions and solute sources , 2017, Precambrian Research.

[22]  N. Planavsky,et al.  Origin of the Neoproterozoic Fulu iron formation, South China: Insights from iron isotopes and rare earth element patterns , 2018, Geochimica et Cosmochimica Acta.

[23]  Huaichun Wu,et al.  Zn-Sr isotope records of the Ediacaran Doushantuo Formation in South China: diagenesis assessment and implications , 2018, Geochimica et Cosmochimica Acta.

[24]  E. Bellefroid,et al.  Constraints on Paleoproterozoic atmospheric oxygen levels , 2018, Proceedings of the National Academy of Sciences.

[25]  Xiaoying Shi,et al.  Stratiform siderites from the Mesoproterozoic Xiamaling Formation in North China: Genesis and environmental implications , 2018, Gondwana Research.

[26]  R. Wood,et al.  Oxygenation of the Mesoproterozoic ocean and the evolution of complex eukaryotes , 2018, Nature Geoscience.

[27]  D. Canfield,et al.  A Mesoproterozoic iron formation , 2018, Proceedings of the National Academy of Sciences.

[28]  Zuoheng Zhang,et al.  Anoxic to suboxic Mesoproterozoic ocean: Evidence from iron isotope and geochemistry of siderite in the Banded Iron Formations from North Qilian, NW China , 2018 .

[29]  B. Rasmussen,et al.  Making magnetite late again: Evidence for widespread magnetite growth by thermal decomposition of siderite in Hamersley banded iron formations , 2018 .

[30]  A. Hofmann,et al.  Trace element and stable (C, O) and radiogenic (Sr) isotope geochemistry of stromatolitic carbonate rocks of the Mesoarchaean Pongola Supergroup: Implications for seawater composition , 2018 .

[31]  Tao Yang,et al.  Updating the Geologic Barcodes for South China: Discovery of Late Archean Banded Iron Formations in the Yangtze Craton , 2017, Scientific Reports.

[32]  Min Wang,et al.  Geochemistry and origin of the Neoproterozoic Dahongliutan banded iron formation (BIF) in the Western Kunlun orogenic belt, Xinjiang (NW China) , 2017 .

[33]  S. Crowe,et al.  Extensive oxidative weathering in the aftermath of a late Neoproterozoic glaciation: Evidence from trace element and chromium isotope records in the Urucum district (Jacadigo Group) and Puga iron formations (Mato Grosso do Sul, Brazil) , 2017 .

[34]  Zi-Fu Zhao,et al.  Melting of subducted continental crust: Geochemical evidence from Mesozoic granitoids in the Dabie-Sulu orogenic belt, east-central China , 2017 .

[35]  A. Bekker,et al.  Iron formations: A global record of Neoarchaean to Palaeoproterozoic environmental history , 2017 .

[36]  K. Konhauser,et al.  The formation of magnetite in the early Archean oceans , 2017 .

[37]  Christopher P. Reed,et al.  Oxygenation history of the Neoproterozoic to early Phanerozoic and the rise of land plants , 2017 .

[38]  A. Suvorova,et al.  Greenalite precipitation linked to the deposition of banded iron formations downslope from a late Archean carbonate platform , 2017 .

[39]  R. Popovitz‐Biro,et al.  A key role for green rust in the Precambrian oceans and the genesis of iron formations , 2017 .

[40]  N. Dauphas,et al.  Iron and oxygen isotope fractionation during iron UV photo-oxidation: Implications for early Earth and Mars , 2017 .

[41]  Nzenti Jean Paul,et al.  A mixed seawater and hydrothermal origin of superior-type banded iron formation (BIF)-hosted Kouambo iron deposit, Palaeoproterozoic Nyong series, Southwestern Cameroon: Constraints from petrography and geochemistry , 2017 .

[42]  Lianchang Zhang,et al.  Changes of Ge/Si, REE + Y and SmNd isotopes in alternating Fe- and Si-rich mesobands reveal source heterogeneity of the ~ 2.54 Ga Sijiaying banded iron formation in Eastern Hebei, China , 2017 .

[43]  A. Bekker,et al.  Trace elements at the intersection of marine biological and geochemical evolution , 2016 .

[44]  D. Canfield,et al.  The oxic degradation of sedimentary organic matter 1400 Ma constrains atmospheric oxygen levels , 2016 .

[45]  K. Hoffmann,et al.  Low-oxygen waters limited habitable space for early animals , 2016, Nature Communications.

[46]  G. Luther,et al.  The role of microaerophilic Fe‐oxidizing micro‐organisms in producing banded iron formations , 2016, Geobiology.

[47]  N. Planavsky,et al.  A shale-hosted Cr isotope record of low atmospheric oxygen during the Proterozoic , 2016 .

[48]  Shaofeng Guo,et al.  Geochronological and geochemical studies of the metasedimentary rocks and diabase from the Jingtieshan deposit, North Qilian, NW China: Constraints on the associated banded iron formations , 2016 .

[49]  D. Canfield,et al.  Sufficient oxygen for animal respiration 1,400 million years ago , 2016, Proceedings of the National Academy of Sciences.

[50]  G. Cox,et al.  A model for Cryogenian iron formation , 2016 .

[51]  Linda C. Kah,et al.  Oxygenation of the mid-Proterozoic atmosphere: clues from chromium isotopes in carbonates , 2016 .

[52]  Zuoheng Zhang,et al.  Petrological and geochemical features of the Jingtieshan banded iron formation (BIF): A unique type of BIF from the Northern Qilian Orogenic Belt, NW China , 2015 .

[53]  E. Hiatt,et al.  The role of sedimentology, oceanography, and alteration on the δ56Fe value of the Sokoman Iron Formation, Labrador Trough, Canada , 2015 .

[54]  Lianchang Zhang,et al.  Depositional Environment of the Paleoproterozoic Yuanjiacun Banded Iron Formation in Shanxi Province, China , 2015 .

[55]  A. Knoll,et al.  Statistical analysis of iron geochemical data suggests limited late Proterozoic oxygenation , 2015, Nature.

[56]  Weiqiang Li,et al.  Biologically recycled continental iron is a major component in banded iron formations , 2015, Proceedings of the National Academy of Sciences.

[57]  A. Hofmann,et al.  A trace element and Pb isotopic investigation into the provenance and deposition of stromatolitic carbonates, ironstones and associated shales of the 3.0 Ga Pongola Supergroup, Kaapvaal Craton , 2015 .

[58]  A. Suvorova,et al.  Precipitation of iron silicate nanoparticles in early Precambrian oceans marks Earth's first iron age , 2015 .

[59]  Christopher T. Reinhard,et al.  Low Mid-Proterozoic atmospheric oxygen levels and the delayed rise of animals , 2014, Science.

[60]  Zhenjie Zhang,et al.  Petrography and geochemistry of the Shilu Fe–Co–Cu ore district, South China: Implications for the origin of a Neoproterozoic BIF system , 2014 .

[61]  E. Bellefroid,et al.  Neoproterozoic iron formation: An evaluation of its temporal, environmental and tectonic significance , 2013 .

[62]  P. Johnson,et al.  ~750Ma banded iron formation from the Arabian-Nubian Shield-Implications for understanding neoproterozoic tectonics, volcanism, and climate change , 2013 .

[63]  J. Gutzmer,et al.  The Composition and Depositional Environments of Mesoarchean Iron Formations of the West Rand Group of the Witwatersrand Supergroup, South Africa , 2013 .

[64]  Lianchang Zhang,et al.  Formation age and tectonic setting of the Shirengou Neoarchean banded iron deposit in eastern Hebei Province: Constraints from geochemistry and SIMS zircon U–Pb dating , 2012 .

[65]  P. Jian,et al.  SHRIMP zircon U–Pb ages and REE partition for high-grade metamorphic rocks in the North Dabie complex: Insight into crustal evolution with respect to Triassic UHP metamorphism in east-central China , 2012 .

[66]  A. M. Thorne,et al.  Deposition of 1.88-billion-year-old iron formations as a consequence of rapid crustal growth , 2012, Nature.

[67]  A. Bekker,et al.  Iron isotope composition of some Archean and Proterozoic iron formations , 2012 .

[68]  L. Robbins,et al.  The composition of Earth's oldest iron formations: The Nuvvuagittuq Supracrustal Belt (Québec, Canada) , 2012 .

[69]  A. Bekker,et al.  Widespread iron-rich conditions in the mid-Proterozoic ocean , 2011, Nature.

[70]  F. Poitrasson,et al.  Fe isotope and trace element geochemistry of the Neoproterozoic syn-glacial Rapitan iron formation , 2011 .

[71]  Lianchang Zhang,et al.  Zircon U–Pb age, Hf isotopes and geochemistry of Shuichang Algoma-type banded iron-formation, North China Craton: Constraints on the ore-forming age and tectonic setting , 2011 .

[72]  F. Huang,et al.  Post-collisional granitoids from the Dabie orogen: New evidence for partial melting of a thickened continental crust , 2011 .

[73]  Lluis Fontboté,et al.  Petrology and geochemistry of the banded iron formation (BIF) of Wadi Karim and Um Anab, Eastern Desert, Egypt: Implications for the origin of Neoproterozoic BIF , 2011 .

[74]  H. Kopp,et al.  Thermochronological constraints on two-stage extrusion of HP/UHP terranes in the Dabie–Sulu orogen, east-central China , 2011 .

[75]  D. Canfield,et al.  Ferruginous Conditions: A Dominant Feature of the Ocean through Earth's History , 2011 .

[76]  N. Dauphas,et al.  Iron and carbon isotope evidence for microbial iron respiration throughout the Archean , 2010 .

[77]  A. Bekker,et al.  Rare Earth Element and yttrium compositions of Archean and Paleoproterozoic Fe formations revisited: New perspectives on the significance and mechanisms of deposition , 2010 .

[78]  D. Canfield,et al.  Spatial variability in oceanic redox structure 1.8 billion years ago , 2010 .

[79]  E. Roden,et al.  Fe, C, and O isotope compositions of banded iron formation carbonates demonstrate a major role for dissimilatory iron reduction in ~2.5 Ga marine environments , 2010 .

[80]  Noah J. Planavsky,et al.  Iron Formation: The Sedimentary Product of a Complex Interplay among Mantle, Tectonic, Oceanic, and Biospheric Processes , 2010 .

[81]  Yan-Yan Zhao,et al.  Stable isotope evidence for involvement of deglacial meltwater in Ediacaran carbonates in South China , 2010 .

[82]  Shan Gao,et al.  Continental and Oceanic Crust Recycling-induced Melt^Peridotite Interactions in the Trans-North China Orogen: U^Pb Dating, Hf Isotopes and Trace Elements in Zircons from Mantle Xenoliths , 2010 .

[83]  B. Windley,et al.  The Ediacaran radiogenic Sr isotope excursion in the Doushantuo Formation in the Three Gorges area, South China , 2010 .

[84]  V. Tenczer,et al.  Geochemistry of basement rocks from SE Kenya and NE Tanzania: indications for rifting and early Pan-African subduction , 2009 .

[85]  A. Bekker,et al.  Iron-oxidizing microbial ecosystems thrived in late Paleoproterozoic redox-stratified oceans , 2009 .

[86]  Yan-Yan Zhao,et al.  Trace element and strontium isotope constraints on sedimentary environment of Ediacaran carbonates in southern Anhui, South China , 2009 .

[87]  P. Andersson,et al.  Neodymium isotopes in Archean seawater and implications for the marine Nd cycle in Earth's early oceans , 2009 .

[88]  A. Koschinsky,et al.  Oxidative scavenging of cerium on hydrous Fe oxide: Evidence from the distribution of rare earth elements and yttrium between Fe oxides and Mn oxides in hydrogenetic ferromanganese crusts , 2009 .

[89]  H. Frimmel Trace element distribution in Neoproterozoic carbonates as palaeoenvironmental indicator , 2009 .

[90]  Shan Gao,et al.  In situ analysis of major and trace elements of anhydrous minerals by LA-ICP-MS without applying an internal standard , 2008 .

[91]  R. Frei,et al.  Trace element and isotopic characterization of Neoarchean and Paleoproterozoic iron formations in the Black Hills (South Dakota, USA): Assessment of chemical change during 2.9–1.9 Ga deposition bracketing the 2.4–2.2 Ga first rise of atmospheric oxygen , 2008 .

[92]  Shan Gao,et al.  Zircon U–Pb age and trace element evidence for Paleoproterozoic granulite-facies metamorphism and Archean crustal rocks in the Dabie Orogen , 2008 .

[93]  P. Andersson,et al.  Continentally-derived solutes in shallow Archean seawater: Rare earth element and Nd isotope evidence in iron formation from the 2.9 Ga Pongola Supergroup, South Africa , 2008 .

[94]  J. Gutzmer,et al.  Origin and Paleoenvironmental Significance of Major Iron Formations at the Archean-Paleoproterozoic Boundary , 2008 .

[95]  雷能忠,et al.  Zircon U-Pb Age, Trace Element, and Hf Isotope Evidence for Paleoproterozoic Granulite-Facies Metamorphism and Archean Crustal Remnant in the Dabie Orogen , 2008 .

[96]  A. Maloof,et al.  Evolution of the 87Sr/86Sr composition of Neoproterozoic seawater , 2007 .

[97]  Tonggang Zhang,et al.  Sulfur and carbon isotope records from 1700 to 800 Ma carbonates of the Jixian section, northern China: Implications for secular isotope variations in Proterozoic seawater and relationships to global supercontinental events , 2007 .

[98]  Yong Zheng,et al.  Mineral isotope evidence for the contemporaneous process of Mesozoic granite emplacement and gneiss metamorphism in the Dabie orogen , 2006 .

[99]  B. Kamber,et al.  Rare Earth Element and Yttrium Variability in South East Queensland Waterways , 2006 .

[100]  D. Newman,et al.  Deposition of banded iron formations by anoxygenic phototrophic Fe(II)-oxidizing bacteria , 2005 .

[101]  C. Klein Some Precambrian banded iron-formations (BIFs) from around the world: Their age, geologic setting, mineralogy, metamorphism, geochemistry, and origins , 2005 .

[102]  Yong‐Fei Zheng,et al.  Low-Grade Metamorphic Rocks in the Dabie-Sulu Orogenic Belt: A Passive-Margin Accretionary Wedge Deformed during Continent Subduction , 2005 .

[103]  F. Rios,et al.  Geochemistry and genesis of the banded iron formations of the Cauê Formation, Quadrilátero Ferrífero, Minas Gerais, Brazil , 2007 .

[104]  M. Whitehouse,et al.  Characterisation of early Archaean chemical sediments by trace element signatures , 2004 .

[105]  Shan Gao,et al.  Geochemical, age, and isotopic constraints on the location of the Sino–Korean/Yangtze Suture and evolution of the Northern Dabie Complex, east central China , 2004 .

[106]  A. Bekker,et al.  Dating the rise of atmospheric oxygen , 2004, Nature.

[107]  N. Beukes,et al.  Deposition, Diagenesis, and Secondary Enrichment of Metals in the Paleoproterozoic Hotazel Iron Formation, Kalahari Manganese Field, South Africa , 2003 .

[108]  J. Platt,et al.  Dating high-grade metamorphism—constraints from rare-earth elements in zircon and garnet , 2003 .

[109]  F. Corfu,et al.  Atlas of Zircon Textures , 2003 .

[110]  U. Schaltegger,et al.  The Composition of Zircon and Igneous and Metamorphic Petrogenesis , 2003 .

[111]  R. C. Morris,et al.  Could bacteria have formed the Precambrian banded iron formations , 2002 .

[112]  D. Rubatto Zircon trace element geochemistry: partitioning with garnet and the link between U–Pb ages and metamorphism , 2002 .

[113]  Gao Tian-shan Zircon U-Pb ages of leucoleptite on the southern margin of the Dabie Mountains and their geological implications , 2002 .

[114]  B. Kamber,et al.  The geochemistry of late Archaean microbial carbonate: Implications for ocean chemistry and continental erosion history , 2001 .

[115]  L. P. Black,et al.  Metamorphic zircon formation by solid‐state recrystallization of protolith igneous zircon , 2000 .

[116]  B. Kamber,et al.  Rare earth elements in Holocene reefal microbialites: a new shallow seawater proxy , 2000 .

[117]  P. N. Shukla,et al.  Isotope and rare earth element chemistry of carbonatite–alkaline complexes of Deccan volcanic province: implications to magmatic and alteration processes , 2000 .

[118]  U. Schärer,et al.  Tectonics of the Dabieshan (eastern China) and possible exhumation mechanism of ultra high‐pressure rocks , 1999 .

[119]  A. J. Kaufman,et al.  The Sr, C and O isotopic evolution of Neoproterozoic seawater , 1999 .

[120]  D. Gebauer,et al.  Internal morphology, habit and U-Th-Pb microanalysis of amphibolite-to-granulite facies zircons: geochronology of the Ivrea Zone (Southern Alps) , 1999 .

[121]  P. Dulski,et al.  Comparing yttrium and rare earths in hydrothermal fluids from the Mid-Atlantic Ridge: implications for Y and REE behaviour during near-vent mixing and for the Y/Ho ratio of Proterozoic seawater , 1999 .

[122]  M. Bau Scavenging of dissolved yttrium and rare earths by precipitating iron oxyhydroxide: experimental evidence for Ce oxidation, Y-Ho fractionation, and lanthanide tetrad effect , 1999 .

[123]  D. Canfield A new model for Proterozoic ocean chemistry , 1998, Nature.

[124]  T. Vennemann,et al.  Crustal contamination and fluid/rock interaction in the carbonatites of Fuerteventura (Canary Islands, Spain): A C, O, H isotope study , 1998 .

[125]  A. J. Kaufman,et al.  Neoproterozoic Fossils in Mesoproterozoic Rocks? Chemostratigraphic Resolution of a Biostratigraphic Conundrum from the North China Platform , 1997 .

[126]  Y. Nozaki,et al.  The fractionation between Y and Ho in the marine environment , 1997 .

[127]  P. Möller,et al.  Yttrium and lanthanides in eastern Mediterranean seawater and their fractionation during redox-cycling , 1997 .

[128]  P. Dulski,et al.  Distribution of yttrium and rare-earth elements in the Penge and Kuruman iron-formations, Transvaal Supergroup, South Africa , 1996 .

[129]  R. Byrne,et al.  Chapter 158 Marine chemistry and geochemistry of the lanthanides , 1996 .

[130]  A. J. Kaufman,et al.  Neoproterozoic variations in the C-isotopic composition of seawater: stratigraphic and biogeochemical implications. , 1995, Precambrian research.

[131]  W. Griffin,et al.  THREE NATURAL ZIRCON STANDARDS FOR U‐TH‐PB, LU‐HF, TRACE ELEMENT AND REE ANALYSES , 1995 .

[132]  W. Landing,et al.  Ocean particle chemistry: The fractionation of rare earth elements between suspended particles and seawater , 1994 .

[133]  P. Stoffers,et al.  Submarine thermal springs associated with young volcanoes: The Teahitia vents, Society Islands, Pacific Ocean , 1993 .

[134]  M. Bau Effects of syn- and post-depositional processes on the rare-earth element distribution in Precambrian iron-formations , 1993 .

[135]  E. Sholkovitz,et al.  The Geochemistry of Rare Earth Elements in the Seasonally Anoxic Water Column and Porewaters of Chesapeake Bay , 1992 .

[136]  B. Bilal Thermodynamic Study of Eu3+ /Eu2+ Redox Reaction in Aqueous Solutions at Elevated Temperatures and Pressures by Means of Cyclic Voltammetry , 1991 .

[137]  C. German,et al.  Redox cycling of rare earth elements in the suboxic zone of the Black Sea , 1991 .

[138]  R. M. Owen,et al.  The europium anomaly of seawater: implications for fluvial versus hydrothermal REE inputs to the oceans , 1991 .

[139]  S. Jacobsen,et al.  The chemical evolution of Precambrian seawater: Evidence from REEs in banded iron formations , 1990 .

[140]  J. Banner,et al.  Calculation of simultaneous isotopic and trace element variations during water-rock interaction with applications to carbonate diagenesis , 1990 .

[141]  C. German,et al.  Application of the Ce anomaly as a paleoredox indicator: The ground rules , 1990 .

[142]  A. J. Kaufman,et al.  Carbonate petrography, kerogen distribution, and carbon and oxygen isotope variations in an early Proterozoic transition from limestone to iron-formation deposition, Transvaal Supergroup, South Africa. , 1990, Economic geology and the bulletin of the Society of Economic Geologists.

[143]  N. Beukes,et al.  Geochemistry and sedimentology of a facies transition from limestone to iron-formation deposition in the early Proterozoic Transvaal Supergroup, South Africa , 1989 .

[144]  S. Jacobsen,et al.  The pore water chemistry of rare earth elements in Buzzards Bay sediments , 1989 .

[145]  Scott M. McLennan,et al.  Rare earth elements in sedimentary rocks; influence of provenance and sedimentary processes , 1989 .

[146]  C. Klein,et al.  Chemistry, petrology and origin of banded iron-formation lithologies from the 3800 MA isua supracrustal belt, West Greenland , 1988 .

[147]  S. Jacobsen,et al.  The Nd and Sr isotopic evolution of Proterozoic seawater , 1988 .

[148]  A. J. Kaufman,et al.  Secular variation in carbon isotope ratios from Upper Proterozoic successions of Svalbard and East Greenland , 1986, Nature.

[149]  S. Taylor,et al.  Large ion lithophile elements in rocks from high-pressure granulite facies terrains , 1985 .

[150]  A. Cairns-smith,et al.  Photo-oxidation of hydrated Fe2+—significance for banded iron formations , 1983, Nature.

[151]  B. Fryer Rare earth evidence in iron-formations for changing Precambrian oxidation states , 1977 .

[152]  J. Veizer,et al.  The nature of O18/O16 and C13/C12 secular trends in sedimentary carbonate rocks , 1976 .

[153]  D. Shaw A review of K-Rb fractionation trends by covariance analysis , 1968 .

[154]  H. Taylor,et al.  Oxygen and carbon isotope studies of carbonatites from the Laacher See district, West Germany and the Alno district, Sweden. , 1967 .