Efficient light trapping in low aspect-ratio honeycomb nanobowl surface texturing for crystalline silicon solar cell applications

We report a significant reflection reduction over a broadband light spectrum in crystalline silicon via introduction of low aspect-ratio honeycomb nanobowl front surface textures. A restructuration technique is developed to shape nanopores into nanobowls, enabling excellent impedance matching and efficient mode coupling. As a result, an overall reflection down to 2% in the spectrum range of 400–1 100 nm wavelength is achieved. In comparison to nanopores-structured light-trapping configurations, the nanobowls-textures have much smaller parasitic surface area, which mitigates the surface recombination losses. The texturing technique offers a promising approach to high efficiency c-Si thin-film solar cells.

[1]  P. Thony,et al.  Full process for integrating silicon nanowire arrays into solar cells , 2009 .

[2]  Peidong Yang,et al.  Light trapping in silicon nanowire solar cells. , 2010, Nano letters.

[3]  Zongfu Yu,et al.  Optical absorption enhancement in amorphous silicon nanowire and nanocone arrays. , 2009, Nano letters.

[4]  J. Vigneron,et al.  Optimization of photonics for corrugated thin-film solar cells , 2009 .

[5]  Danièle Revel,et al.  Renewable energy technologies: cost analysis series , 2012 .

[6]  Influence of the pattern shape on the efficiency of front-side periodically patterned ultrathin crystalline silicon solar cells , 2012, 1208.2822.

[7]  M. Green The path to 25% silicon solar cell efficiency: History of silicon cell evolution , 2009 .

[8]  Hao-Chih Yuan,et al.  An 18.2%-efficient black-silicon solar cell achieved through control of carrier recombination in nanostructures. , 2012, Nature nanotechnology.

[9]  Yunjie Yan,et al.  Aligned single-crystalline Si nanowire arrays for photovoltaic applications. , 2005, Small.

[10]  Xiao Wei Sun,et al.  Enhanced optical absorption in nanopatterned silicon thin films with a nano-cone-hole structure for photovoltaic applications. , 2011, Optics letters.

[11]  H. Atwater,et al.  Plasmonics for improved photovoltaic devices. , 2010, Nature materials.

[12]  J. Springer,et al.  TCO and light trapping in silicon thin film solar cells , 2004 .

[13]  Zhipeng Huang,et al.  Metal‐Assisted Chemical Etching of Silicon: A Review , 2011, Advanced materials.

[14]  Otto L Muskens,et al.  Design of light scattering in nanowire materials for photovoltaic applications. , 2008, Nano letters.

[15]  Gang Chen,et al.  Efficient light trapping in inverted nanopyramid thin crystalline silicon membranes for solar cell applications. , 2012, Nano letters.

[16]  Fei Wang,et al.  Optical absorption enhancement in nanopore textured-silicon thin film for photovoltaic application. , 2010, Optics letters.

[17]  Gang Chen,et al.  Toward the Lambertian limit of light trapping in thin nanostructured silicon solar cells. , 2010, Nano letters.

[18]  Hongyu Yu,et al.  Low aspect-ratio hemispherical nanopit surface texturing for enhancing light absorption in crystalline Si thin film-based solar cells , 2011 .

[19]  Zongfu Yu,et al.  Nanodome solar cells with efficient light management and self-cleaning. , 2010, Nano letters.

[20]  Guo-Qiang Lo,et al.  Si nanocone array optimization on crystalline Si thin films for solar energy harvesting , 2010 .

[21]  B. Potapkin,et al.  Minimizing light reflection from dielectric textured surfaces. , 2011, Journal of the Optical Society of America. A, Optics, image science, and vision.

[22]  Mehmet Acet,et al.  Reflection properties of nanostructure-arrayed silicon surfaces , 2000 .

[23]  Scott Ward,et al.  Nanostructured black silicon and the optical reflectance of graded-density surfaces , 2009 .

[24]  Nathan S. Lewis,et al.  High-performance Si microwire photovoltaics , 2011 .

[25]  Aasmund Sudbø,et al.  Comparison of periodic light-trapping structures in thin crystalline silicon solar cells , 2011 .

[26]  Xiao Wei Sun,et al.  Si nanopillar array optimization on Si thin films for solar energy harvesting , 2009 .

[27]  Xin Wang,et al.  High-performance silicon nanohole solar cells. , 2010, Journal of the American Chemical Society.

[28]  D. Kwong,et al.  Novel silicon nanohemisphere-array solar cells with enhanced performance. , 2011, Small.