Silica-rich deposits and hydrated minerals at Gusev Crater, Mars: Vis-NIR spectral characterization and regional mapping

[1]  O. Aharonson,et al.  Laboratory experiments and models of diffusive emplacement of ground ice on Mars , 2009 .

[2]  D. Ming,et al.  Geochemical properties of rocks and soils in Gusev Crater, Mars: Results of the Alpha Particle X-Ray Spectrometer from Cumberland Ridge to Home Plate , 2008 .

[3]  John F. Mustard,et al.  Orbital Identification of Carbonate-Bearing Rocks on Mars , 2008 .

[4]  G. Benedix,et al.  A multidisciplinary study of silica sinter deposits with applications to silica identification and detection of fossil life on Mars , 2008 .

[5]  William H. Farrand,et al.  Light-toned salty soils and coexisting Si-rich species discovered by the Mars Exploration Rover Spirit in Columbia Hills , 2008 .

[6]  William H. Farrand,et al.  Spirit Mars Rover Mission to the Columbia Hills, Gusev Crater: Mission overview and selected results from the Cumberland Ridge to Home Plate , 2008 .

[7]  William H. Farrand,et al.  Rock spectral classes observed by the Spirit Rover's Pancam on the Gusev Crater Plains and in the Columbia Hills , 2008 .

[8]  D. Ming,et al.  Iron mineralogy and aqueous alteration from Husband Hill through Home Plate at Gusev Crater, Mars: Results from the Mössbauer instrument on the Spirit Mars Exploration Rover , 2008 .

[9]  M. Zolotov,et al.  Formation of silica by low-temperature acid alteration of Martian rocks: Physical-chemical constraints , 2008 .

[10]  N. Izenberg,et al.  Hydrated silicate minerals on Mars observed by the Mars Reconnaissance Orbiter CRISM instrument , 2008, Nature.

[11]  High‐silica deposits of an aqueous origin in western Hellas Basin, Mars , 2008 .

[12]  Jeffrey R. Johnson,et al.  Hydrothermal processes at Gusev Crater: An evaluation of Paso Robles class soils , 2008 .

[13]  William H. Farrand,et al.  Hydrothermal origin of halogens at Home Plate, Gusev Crater , 2008 .

[14]  D. Ming,et al.  Detection of Silica-Rich Deposits on Mars , 2008, Science.

[15]  E. Cloutis,et al.  Spectral reflectance properties of minerals exposed to simulated Mars surface conditions , 2008 .

[16]  J. Bishop,et al.  Mineralogy of the Paso Robles soils on Mars , 2008 .

[17]  J. Bell,et al.  Vis-NIR Spectral Characterization of Si-rich Deposits at Gusev Crater, Mars , 2008 .

[18]  S. Squyres,et al.  The Nature and Distribution of Silica at Home Plate in Gusev Crater, Mars: Evidence for a Hydrothermal System , 2008 .

[19]  P. Christensen,et al.  The Martian Surface: The mineralogy of Gusev crater and Meridiani Planum derived from the Miniature Thermal Emission Spectrometers on the Spirit and Opportunity rovers , 2008 .

[20]  Spectral Evidence for Sedimentary Silica on Mars , 2008 .

[21]  Jeffrey R. Johnson,et al.  Mineralogic constraints on sulfur‐rich soils from Pancam spectra at Gusev crater, Mars , 2007 .

[22]  A. McEwen,et al.  Ultrahigh Resolution Topographic Mapping of Mars with HiRISE Stereo Images: Methods and First Results , 2007 .

[23]  Jeffrey R. Johnson,et al.  Dust deposition on the Mars Exploration Rover Panoramic Camera (Pancam) calibration targets , 2007 .

[24]  D. Ming,et al.  Evidence for Montmorillonite or its Compositional Equivalent in Columbia Hills, Mars , 2007 .

[25]  A. F. C. Haldemann,et al.  Pyroclastic Activity at Home Plate in Gusev Crater, Mars , 2007, Science.

[26]  Raymond E. Arvidson,et al.  Compact Reconnaissance Imaging Spectrometer for Mars (CRISM) on Mars Reconnaissance Orbiter (MRO) , 2007 .

[27]  C. B. Farmer,et al.  Water vapor diffusion in Mars subsurface environments , 2007 .

[28]  S. J. Sutley,et al.  USGS Digital Spectral Library splib06a , 2007 .

[29]  Philip R. Christensen,et al.  Surface mineralogy of Martian low-albedo regions from MGS-TES data: Implications for upper crustal evolution and surface alteration , 2007 .

[30]  S. Squyres,et al.  Structure and stratigraphy of Home Plate from the Spirit Mars Exploration Rover , 2006 .

[31]  William H. Farrand,et al.  Spectrophotometric properties of materials observed by Pancam on the Mars Exploration Rovers: 2. Opportunity , 2006 .

[32]  Jeffrey R. Johnson,et al.  The rocks of Gusev Crater as viewed by the Mini‐TES instrument , 2006 .

[33]  J. Bandfield,et al.  Determination and interpretation of surface and atmospheric Miniature Thermal Emission Spectrometer spectral end‐members at the Meridiani Planum landing site , 2006 .

[34]  S. Squyres,et al.  Mineralogy of the light-toned outcrop at Meridiani Planum as seen by the Miniature Thermal Emission Spectrometer and implications for its formation , 2006 .

[35]  Richard V. Morris,et al.  Alkaline volcanic rocks from the Columbia Hills, Gusev crater, Mars , 2006 .

[36]  John F. Mustard,et al.  Detection and discrimination of sulfate minerals using reflectance spectroscopy , 2006 .

[37]  T. Encrenaz,et al.  Global Mineralogical and Aqueous Mars History Derived from OMEGA/Mars Express Data , 2006, Science.

[38]  E. Cloutis,et al.  HOSERLab: A New Planetary Spectrophotometer Facility , 2006 .

[39]  Miles J. Johnson,et al.  In‐flight calibration and performance of the Mars Exploration Rover Panoramic Camera (Pancam) instruments , 2006 .

[40]  William H. Farrand,et al.  Spectrophotometric properties of materials observed by Pancam on the Mars Exploration Rovers: 1. Spirit: PANCAM PHOTOMETRY-SPIRIT , 2006 .

[41]  William H. Farrand,et al.  Rocks of the Columbia Hills , 2006 .

[42]  William H. Farrand,et al.  Overview of the Spirit Mars Exploration Rover Mission to Gusev Crater: Landing site to Backstay Rock in the Columbia Hills , 2006 .

[43]  Steven W. Squyres,et al.  Alpha Particle X‐Ray Spectrometer (APXS): Results from Gusev crater and calibration report , 2006 .

[44]  William H. Farrand,et al.  Geochemical and mineralogical indicators for aqueous processes in the Columbia Hills of Gusev crater, Mars , 2006 .

[45]  D. Ming,et al.  Mössbauer mineralogy of rock, soil, and dust at Gusev crater, Mars: Spirit's journey through weakly altered olivine basalt on the plains and pervasively altered basalt in the Columbia Hills , 2006 .

[46]  M. Morris,et al.  Infrared and Raman Spectroscopy , 2000 .

[47]  O. Aharonson,et al.  Stability and exchange of subsurface ice on Mars , 2005 .

[48]  J. Michalski,et al.  Mineralogical constraints on the high-silica martian surface component observed by TES , 2005 .

[49]  R. Morris,et al.  Modeling Visible/Near-Infrared Photometric Properties of Dustfall on a Known Substrate , 2005 .

[50]  R E Arvidson,et al.  Initial Results from the Mini-TES Experiment in Gusev Crater from the Spirit Rover , 2004, Science.

[51]  K. Cook,et al.  Silica phases in sinters and residues from geothermal fields of New Zealand , 2004 .

[52]  Janice L. Bishop,et al.  Multiple techniques for mineral identification on Mars: a study of hydrothermal rocks as potential analogues for astrobiology sites on Mars , 2004 .

[53]  S. Erard,et al.  Nonlinear spectral mixing: Quantitative analysis of laboratory mineral mixtures , 2004 .

[54]  Steven W. Squyres,et al.  The new Athena alpha particle X‐ray spectrometer for the Mars Exploration Rovers , 2003 .

[55]  S. T. Elliot,et al.  Mars Exploration Rover Athena Panoramic Camera (Pancam) investigation , 2003 .

[56]  J. Michalski,et al.  Thermal emission spectroscopy of the silica polymorphs and considerations for remote sensing of Mars , 2003 .

[57]  J. Bandfield,et al.  Spectroscopic Identification of Carbonate Minerals in the Martian Dust , 2003, Science.

[58]  Ian G. Main,et al.  Statistical analysis of daily seismic event rate as a precursor to volcanic eruptions , 2003 .

[59]  S. McLennan Sedimentary silica on Mars , 2003 .

[60]  K. Campbell,et al.  The mineralogy, texture and significance of silica derived from alteration by steam condensate in three New Zealand geothermal fields , 2002, Clay Minerals.

[61]  Harry Y. McSween,et al.  Spectral evidence for weathered basalt as an alternative to andesite in the northern lowlands of Mars , 2002, Nature.

[62]  Mark Maimone,et al.  Mars exploration rover engineering cameras , 2001, Remote Sensing.

[63]  Joshua L. Bandfield,et al.  A Global View of Martian Surface Compositions from MGS-TES , 2000 .

[64]  R. J. Reid,et al.  Imager for Mars Pathfinder (IMP) image calibration , 1999 .

[65]  Bernard Schmitt,et al.  The temperature‐dependent near‐infrared absorption spectrum of hexagonal H2O ice , 1998 .

[66]  G. Bock,et al.  Evolution of hydrothermal ecosystems on Earth (and Mars , 1998 .

[67]  J D Farmer,et al.  Hydrothermal systems on Mars: an assessment of present evidence. , 1996, Ciba Foundation symposium.

[68]  J. Farmer,et al.  Fossilization processes in siliceous thermal springs: trends in preservation along thermal gradients. , 1996, Ciba Foundation symposium.

[69]  B. Schrader Infrared and Raman Spectroscopy , 1995 .

[70]  B. Hapke Theory of reflectance and emittance spectroscopy , 1993 .

[71]  David Crisp,et al.  Groundbased Imaging Spectroscopy of Mars in the Near-Infrared: Preliminary Results , 1993 .

[72]  M. Mellon,et al.  Geographic variations in the thermal and diffusive stability of ground ice on Mars , 1993 .

[73]  James K. Crowley,et al.  Visible and near‐infrared (0.4–2.5 μm) reflectance spectra of Playa evaporite minerals , 1991 .

[74]  K. Crowley,et al.  Experimental studies of annealing of etched fission tracks in fluorapatite , 1991 .

[75]  Anne B. Kahle,et al.  Thermal infrared spectral character of Hawaiian basaltic glasses , 1990 .

[76]  J. Pollack,et al.  Ice and minerals on Callisto - A reassessment of the reflectance spectra , 1990 .

[77]  John F. Mustard,et al.  Quantitative Abundance Estimates From Bidirectional Reflectance Measurements , 1987 .

[78]  R. Clark,et al.  Reflectance spectroscopy: Quantitative analysis techniques for remote sensing applications , 1984 .

[79]  D. Hillel,et al.  The stability of ground ice in the equatorial region of Mars , 1983 .

[80]  R. Clark,et al.  The spectral reflectance of water-mineral mixtures at low temperatures. [observed on natural satellites and other solar system objects] , 1981 .

[81]  Roger N. Clark,et al.  Water frost and ice - The near-infrared spectral reflectance 0.65-2.5 microns. [observed on natural satellites and other solar system objects , 1981 .

[82]  A. J. Ellis,et al.  Chemistry and Geothermal Systems , 1977 .

[83]  K. Herr,et al.  Evidence About Hydrate and Solid Water in the Martian Surface From the , 1974 .

[84]  J. A. Decker,et al.  High altitude infrared spectroscopic evidence for bound water on Mars. , 1973 .

[85]  William M. Irvine,et al.  Infrared optical properties of water and ice spheres , 1968 .

[86]  H. Eugster Hydrous Sodium Silicates from Lake Magadi, Kenya: Precursors of Bedded Chert , 1967, Science.

[87]  W. Sinton,et al.  On the composition of martian surface materials , 1967 .

[88]  R. Howie,et al.  Rock-forming minerals , 1962 .

[89]  D. White,et al.  Silica in hot-spring waters , 1956 .