Browian dynamics simulation of finitely extensible bead-spring chains

[1]  Daniel N. Ostrov,et al.  A finitely extensible bead-spring chain model for dilute polymer solutions , 1991 .

[2]  J. García de la Torre,et al.  A second‐order algorithm for the simulation of the Brownian dynamics of macromolecular models , 1990 .

[3]  R. Tanner,et al.  Rheology of Bead-NonLinear Spring Chain Macromolecules , 1989 .

[4]  J. Honerkamp,et al.  Numerical integration of stochastic differential equations , 1988 .

[5]  D. Ermak,et al.  Brownian dynamics with hydrodynamic interactions , 1978 .

[6]  E. J. Hinch,et al.  Application of the Langevin equation to fluid suspensions , 1975, Journal of Fluid Mechanics.

[7]  H. R. Warner,et al.  Kinetic Theory and Rheology of Dilute Suspensions of Finitely Extendible Dumbbells , 1972 .

[8]  R. Bird,et al.  Rheological Properties of Three Solutions. Part II. Relaxation and Growth of Shear and Normal Stresses , 1967 .

[9]  A. Peterlin Hydrodynamics of macromolecules in a velocity field with longitudinal gradient , 1966 .

[10]  Von Anton Peterlin Einflu der endlichen molekllnge auf die gradientenabhngigkeit des staudinger-index , 1961 .

[11]  P. E. Rouse A Theory of the Linear Viscoelastic Properties of Dilute Solutions of Coiling Polymers , 1953 .

[12]  R. Bird,et al.  On coil–stretch transitions in dilute polymer solutions , 1989 .

[13]  H. C. Öttinger A model of dilute polymer solutions with hydrodynamic interaction and finite extensibility. I. Basic equations and series expansions , 1987 .

[14]  H. C. Öttinger Exact solution of the rouse model with discrete time evolution , 1986 .

[15]  P. J. Dotson,et al.  Polymer solution rheology based on a finitely extensible bead—spring chain model , 1980 .

[16]  R. Bird Dynamics of Polymeric Liquids , 1977 .