Adaptive Sampling and Fast Low-Rank Matrix Approximation
暂无分享,去创建一个
[1] Prabhakar Raghavan,et al. Computing on data streams , 1999, External Memory Algorithms.
[2] Alan M. Frieze,et al. Fast Monte-Carlo algorithms for finding low-rank approximations , 1998, Proceedings 39th Annual Symposium on Foundations of Computer Science (Cat. No.98CB36280).
[3] Alan M. Frieze,et al. Clustering in large graphs and matrices , 1999, SODA '99.
[4] Philip S. Yu,et al. Fast algorithms for projected clustering , 1999, SIGMOD '99.
[5] Jirí Matousek,et al. On Approximate Geometric k -Clustering , 2000, Discret. Comput. Geom..
[6] Dimitris Achlioptas,et al. Fast computation of low rank matrix approximations , 2001, STOC '01.
[7] Sudipto Guha,et al. Data-streams and histograms , 2001, STOC '01.
[8] Ziv Bar-Yossef,et al. Sampling lower bounds via information theory , 2003, STOC '03.
[9] Marek Karpinski,et al. Approximation schemes for clustering problems , 2003, STOC '03.
[10] Petros Drineas,et al. Pass efficient algorithms for approximating large matrices , 2003, SODA '03.
[11] Joan Feigenbaum,et al. On graph problems in a semi-streaming model , 2005, Theor. Comput. Sci..
[12] Santosh S. Vempala,et al. Matrix approximation and projective clustering via volume sampling , 2006, SODA '06.
[13] Petros Drineas,et al. FAST MONTE CARLO ALGORITHMS FOR MATRICES II: COMPUTING A LOW-RANK APPROXIMATION TO A MATRIX∗ , 2004 .
[14] Sanjeev Arora,et al. A Fast Random Sampling Algorithm for Sparsifying Matrices , 2006, APPROX-RANDOM.