Operator-Splitting Based Fast Sweeping Methods for Isotropic Wave Propagation in a Moving Fluid

Wave propagation in an isotropic acoustic medium occupied by a moving fluid is governed by an anisotropic eikonal equation. Since this anisotropic eikonal equation is associated with an inhomogeneous Hamiltonian, most of existing anisotropic eikonal solvers are either inapplicable or of unpredictable behavior in convergence. Realizing that this anisotropic eikonal equation is defined by a sum of two well-understood first-order differential operators, we propose novel operator-splitting based fast sweeping methods to solve this generalized eikonal equation. We develop various operator-splitting methods relying on the Peaceman--Rachford scheme, the Douglas--Rachford scheme, the $\theta$-scheme, and the regularized $\theta$-scheme. After applying the operator-splitting strategy, each splitting step corresponds to a much simpler Hamilton--Jacobi equation so that we can apply the Lax--Friedrichs sweeping method to solve these splitted equations efficiently and easily. Two- and three-dimensional examples demons...

[1]  Benamou,et al.  A COMPACT UPWIND SECOND ORDER SCHEME FOR THE EIKONAL EQUATION , 2010 .

[2]  Hongkai Zhao,et al.  A Fast Sweeping Method for Static Convex Hamilton–Jacobi Equations , 2007, J. Sci. Comput..

[3]  E. T. Kornhauser,et al.  Ray Theory for Moving Fluids , 1953 .

[4]  W. Symes,et al.  Paraxial eikonal solvers for anisotropic quasi-P travel times , 2001 .

[5]  François Coulouvrat,et al.  Meteorologically induced variability of sonic-boom characteristics of supersonic aircraft in cruising flight , 2005 .

[6]  Jianliang Qian,et al.  Fast Sweeping Methods for Factored Anisotropic Eikonal Equations: Multiplicative and Additive Factors , 2012, J. Sci. Comput..

[7]  J. Sethian,et al.  3-D traveltime computation using the fast marching method , 1999 .

[8]  R. Glowinski,et al.  Viscous Flow Simulation by Finite Element Methods and Related Numerical Techniques , 1985 .

[9]  Alexander Vladimirsky,et al.  Ordered Upwind Methods for Static Hamilton-Jacobi Equations: Theory and Algorithms , 2003, SIAM J. Numer. Anal..

[10]  Hongkai Zhao,et al.  Fast Sweeping Methods for Eikonal Equations on Triangular Meshes , 2007, SIAM J. Numer. Anal..

[11]  S. Osher,et al.  Algorithms for overcoming the curse of dimensionality for certain Hamilton–Jacobi equations arising in control theory and elsewhere , 2016, Research in the Mathematical Sciences.

[12]  H. Saunders,et al.  Acoustics: An Introduction to Its Physical Principles and Applications , 1984 .

[13]  P. Souganidis Max-min representations and product formulas for the viscosity solutions of Hamilton-Jacobi equations with applications to differential games , 1985 .

[14]  R. Newcomb VISCOSITY SOLUTIONS OF HAMILTON-JACOBI EQUATIONS , 2010 .

[15]  S. Osher,et al.  Lax-Friedrichs sweeping scheme for static Hamilton-Jacobi equations , 2004 .

[16]  J. Tsitsiklis,et al.  Efficient algorithms for globally optimal trajectories , 1994, Proceedings of 1994 33rd IEEE Conference on Decision and Control.

[17]  Hongkai Zhao,et al.  High Order Fast Sweeping Methods for Static Hamilton–Jacobi Equations , 2006, J. Sci. Comput..

[18]  Stanley Osher,et al.  Fast Sweeping Methods for Static Hamilton-Jacobi Equations , 2004, SIAM J. Numer. Anal..

[19]  Stanley Osher,et al.  Legendre-transform-based fast sweeping methods for static Hamilton-Jacobi equations on triangulated meshes , 2008, J. Comput. Phys..

[20]  Jianliang Qian,et al.  Paraxial geometrical optics for quasi-P waves: theories and numerical methods , 2002 .

[21]  Stanley Osher,et al.  Fast Sweeping Algorithms for a Class of Hamilton-Jacobi Equations , 2003, SIAM J. Numer. Anal..

[22]  Danping Peng,et al.  Weighted ENO Schemes for Hamilton-Jacobi Equations , 1999, SIAM J. Sci. Comput..

[23]  J. Vidale Finite-difference calculation of travel times , 1988 .

[24]  Stanley Bak,et al.  Some Improvements for the Fast Sweeping Method , 2010, SIAM J. Sci. Comput..

[25]  Jianliang Qian,et al.  An adjoint state method for three-dimensional transmission traveltime tomography using first-arrivals , 2006 .

[26]  R. Glowinski,et al.  Augmented Lagrangian and Operator-Splitting Methods in Nonlinear Mechanics , 1987 .

[27]  James Ralston,et al.  Mountain Waves and Gaussian Beams , 2007, Multiscale Model. Simul..

[28]  Jianliang Qian,et al.  An adaptive finite-difference method for traveltimes and amplitudes , 2002 .

[29]  Roland Glowinski,et al.  Splitting Methods for the Numerical Solution of the Incompressible Navier-Stokes Equations. , 1984 .

[30]  Jianliang Qian,et al.  A stopping criterion for higher-order sweeping schemes for static Hamilton-Jacobi equations , 2010 .

[31]  R. Glowinski Finite element methods for incompressible viscous flow , 2003 .

[32]  J. Sethian,et al.  Fronts propagating with curvature-dependent speed: algorithms based on Hamilton-Jacobi formulations , 1988 .

[33]  Hongkai Zhao,et al.  A fast sweeping method for Eikonal equations , 2004, Math. Comput..

[34]  P. Dupuis,et al.  Markov chain approximations for deterministic control problems with affine dynamics and quadratic cost in the control , 1997, Proceedings of the 36th IEEE Conference on Decision and Control.

[35]  S. Baskar,et al.  Characteristic Fast Marching Method for Monotonically Propagating Fronts in a Moving Medium , 2013, SIAM J. Sci. Comput..

[36]  Jianliang Qian,et al.  High-Order Factorization Based High-Order Hybrid Fast Sweeping Methods for Point-Source Eikonal Equations , 2014, SIAM J. Numer. Anal..

[37]  W. Symes,et al.  Finite‐difference quasi‐P traveltimes for anisotropic media , 2001 .

[38]  Wang Hai-bing,et al.  High-order essentially non-oscillatory schemes for Hamilton-Jacobi equations , 2006 .