Proof Analysis in Modal Logic

A general method for generating contraction- and cut-free sequent calculi for a large family of normal modal logics is presented. The method covers all modal logics characterized by Kripke frames determined by universal or geometric properties and it can be extended to treat also Gödel–Löb provability logic. The calculi provide direct decision methods through terminating proof search. Syntactic proofs of modal undefinability results are obtained in the form of conservativity theorems.

[1]  G. F. Shvarts,et al.  Gentzen Style Systems for K45 and K45D , 1989, Logic at Botik.

[2]  Daniel Leivant,et al.  On the proof theory of the modal logic for arithmetic provability , 1981, Journal of Symbolic Logic.

[3]  M. Fitting Proof Methods for Modal and Intuitionistic Logics , 1983 .

[4]  Luca Viganò,et al.  Labelled non-classical logics , 2000 .

[5]  Alex K. Simpson,et al.  The proof theory and semantics of intuitionistic modal logic , 1994 .

[6]  Sara Negri,et al.  Cut Elimination in the Presence of Axioms , 1998, Bulletin of Symbolic Logic.

[7]  Heinrich Wansing,et al.  Proof Theory of Modal Logic , 1996 .

[8]  Rajeev Goré,et al.  Tableau Methods for Modal and Temporal Logics , 1999 .

[9]  Claudio Castellini,et al.  Automated reasoning in quantified modal and temporal logics , 2005, AI Commun..

[10]  Sara Negri,et al.  Contraction-free sequent calculi for geometric theories with an application to Barr's theorem , 2003, Arch. Math. Log..

[11]  Heinrich Wansing,et al.  Sequent Systems for Modal Logics , 2002 .

[12]  Torben Braüner,et al.  A Cut-Free Gentzen Formulation of the Modal Logic S5 , 2000, Log. J. IGPL.

[13]  R. L. Goodstein,et al.  Provability in logic , 1959 .

[14]  Alan Smaill,et al.  Centre for Intelligent Systems and Their Applications a Systematic Presentation of Quantified Modal Logics a Systematic Presentation of Quantified Modal Logics a Systematic Presentation of Quantified Modal Logics , 2022 .

[15]  Sara Negri,et al.  Proof systems for lattice theory , 2004, Math. Struct. Comput. Sci..

[16]  Luca Viganò,et al.  Natural Deduction for Non-Classical Logics , 1998, Stud Logica.

[17]  Silvio Valentini,et al.  The modal logic of provability: Cut-elimination , 1983, J. Philos. Log..

[18]  R. A. Bull,et al.  Basic Modal Logic , 1984 .

[19]  Anil Nerode,et al.  Some Lectures on Modal Logic , 1991 .

[20]  Sara Negri,et al.  Structural proof theory , 2001 .

[21]  II. Mathematisches Power and Weakness of the Modal Display Calculus , 1996 .

[22]  Silvio Valentini,et al.  The modal logic of provability. The sequential approach , 1982, Journal of Philosophical Logic.

[23]  Hans Jürgen Ohlbach,et al.  Translation Methods for Non-Classical Logics: An Overview , 1993, Log. J. IGPL.

[24]  Thierry Coquand,et al.  Proof-theoretical analysis of order relations , 2004, Arch. Math. Log..

[25]  Laurent Catach,et al.  TABLEAUX: A general theorem prover for modal logics , 1991, Journal of Automated Reasoning.

[26]  Sally Popkorn First Steps in Modal Logic , 1995 .

[27]  G. Mints A Short Introduction to Modal Logic , 1992 .

[28]  M. Okada,et al.  A proof-theoretic study of the correspondence of classical logic and modal logic , 2003, J. Symb. Log..

[29]  Patrick Blackburn,et al.  Representation, Reasoning, and Relational Structures: a Hybrid Logic Manifesto , 2000, Log. J. IGPL.

[30]  Helmut Schwichtenberg,et al.  Basic proof theory , 1996, Cambridge tracts in theoretical computer science.

[31]  M. de Rijke,et al.  Modal Logic , 2001, Cambridge Tracts in Theoretical Computer Science.

[32]  Grigori Mints,et al.  Indexed systems of sequents and cut-elimination , 1997, J. Philos. Log..

[33]  M. Kracht Power and Weakness of the Modal Display Calculus , 1996 .