Electromagnetic detection of dielectric cylinders by a neural network approach

The neural network approach is applied to the detection of cylindric objects as well as their geometric and electrical characteristics inside a given investigation domain. The electric field values scattered by the object and available at a small number of locations are fed into the network, whose output is the dielectric permittivity, and the location and radius of the cylinder. The results are evaluated using different sets of testing data, and the dependence of the various output parameters to the input are considered. The algorithm performance shows that the approach is able to solve the inverse scattering problem quickly. This may be useful for real-time remote-sensing applications.

[1]  Mary M. Poulton,et al.  Neural network pattern recognition of subsurface EM images , 1992 .

[2]  M. Pastorino,et al.  On the use of regularization techniques in numerical inverse-scattering solutions for microwave imaging applications , 1995 .

[3]  Matteo Pastorino,et al.  Numerical electromagnetic inverse-scattering solutions for two-dimensional infinite dielectric cylinders buried in a lossy half-space , 1993 .

[4]  C. Pichot,et al.  Inverse scattering: an iterative numerical method for electromagnetic imaging , 1991 .

[5]  M. Pastorino,et al.  Two-dimensional microwave imaging by a numerical inverse scattering solution , 1990 .

[6]  Eric L. Miller,et al.  A multiscale, statistically based inversion scheme for linearized inverse scattering problems , 1996, IEEE Trans. Geosci. Remote. Sens..

[7]  Matteo Pastorino,et al.  A Gibbs random field-based active electromagnetic method for noninvasive diagnostics in biomedical applications , 1995 .

[8]  S.R.H. Hoole,et al.  Artificial neural networks in the solution of inverse electromagnetic field problems , 1993 .

[9]  R. Kleinman,et al.  Microwave imaging-Location and shape reconstruction from multifrequency scattering data , 1997 .

[10]  J.-C. Bolomey,et al.  Recent European developments in active microwave imaging for industrial, scientific, and medical applications , 1989 .

[11]  Teck-Seng Low,et al.  The use of finite elements and neural networks for the solution of inverse electromagnetic problems , 1992 .

[12]  L. Peters,et al.  Ground penetrating radar as a subsurface environmental sensing tool , 1994, Proc. IEEE.

[13]  D. S. Jones,et al.  The theory of electromagnetism , 1964 .

[14]  M. Pastorino,et al.  Redundant electromagnetic data for microwave imaging of three-dimensional dielectric objects , 1994 .

[15]  Hugo Hidalgo,et al.  Application of constructive learning algorithms to the inverse problem , 1996, IEEE Trans. Geosci. Remote. Sens..

[16]  Geoffrey E. Hinton,et al.  Learning representations by back-propagating errors , 1986, Nature.

[17]  A. Raiche A pattern recognition approach to geophysical inversion using neural nets , 1991 .

[18]  Geoffrey E. Hinton,et al.  Learning representations by back-propagation errors, nature , 1986 .

[19]  Theodoros D. Tsiboukis,et al.  Electromagnetic field inversion using the Quickprop method , 1997 .

[20]  V. Chandrasekar,et al.  Development of a neural network based algorithm for rainfall estimation from radar observations , 1997, IEEE Trans. Geosci. Remote. Sens..

[21]  Mohan M. Trivedi,et al.  A neural network filter to detect small targets in high clutter backgrounds , 1995, IEEE Trans. Neural Networks.

[22]  Horst Bischof,et al.  Multispectral classification of Landsat-images using neural networks , 1992, IEEE Trans. Geosci. Remote. Sens..

[23]  G. A. Ellis,et al.  An analysis technique for buried inhomogeneous dielectric objects in the presence of an air-Earth interface , 1995, IEEE Trans. Geosci. Remote. Sens..

[24]  Satish S. Udpa,et al.  Solution of inverse problems in electromagnetics using Hopfield neural networks , 1995 .

[25]  S. Chakrabarti,et al.  Robust radar target classifier using artificial neural networks , 1995, IEEE Trans. Neural Networks.

[26]  L. Blanc-Féraud,et al.  A new regularization scheme for inverse scattering , 1997 .

[27]  M.R. Azimi-Sadjadi,et al.  Detection and classification of buried dielectric anomalies using a separated aperture sensor and a neural network discriminator , 1991, [1991] Conference Record. IEEE Instrumentation and Measurement Technology Conference.

[28]  Michael T. Manry,et al.  A robust statistical-based estimator for soil moisture retrieval from radar measurements , 1997, IEEE Trans. Geosci. Remote. Sens..

[29]  Richard G. Plumb,et al.  Electromagnetic imaging of underground targets using constrained optimization , 1995, IEEE Trans. Geosci. Remote. Sens..

[30]  Jenq-Neng Hwang,et al.  Retrieval of snow parameters by iterative inversion of a neural network , 1993, IEEE Trans. Geosci. Remote. Sens..

[31]  Rodolfo Zunino,et al.  YPROP: Yet Another Accelerating Technique for the Back Propagation , 1993 .

[32]  P. M. van den Berg,et al.  Two‐dimensional location and shape reconstruction , 1994 .

[33]  Mahmood R. Azimi-Sadjadi,et al.  Detection and classification of buried dielectric anomalies using neural networks-further results , 1994 .