Review of high-contrast imaging systems for current and future ground-based and space-based telescopes: Part II. Common path wavefront sensing/control and coherent differential imaging

The Optimal Optical Coronagraph (OOC) Workshop held at the Lorentz Center in September 2017 in Leiden, the Netherlands, gathered a diverse group of 25 researchers working on exoplanet instrumentation to stimulate the emergence and sharing of new ideas. In this second installment of a series of three papers summarizing the outcomes of the OOC workshop, we present an overview of common path wavefront sensing/control and Coherent Differential Imaging techniques, highlight the latest results, and expose their relative strengths and weaknesses. We layout critical milestones for the field with the aim of enhancing future ground/space based high contrast imaging platforms. Techniques like these will help to bridge the daunting contrast gap required to image a terrestrial planet in the zone where it can retain liquid water, in reflected light around a G type star from space.

[1]  Michael Wegner,et al.  Ground-based and Airborne Instrumentation for Astronomy III , 2010 .

[2]  Frantz Martinache,et al.  DANCING IN THE DARK: NEW BROWN DWARF BINARIES FROM KERNEL PHASE INTERFEROMETRY , 2013, 1302.6682.

[3]  Frantz Martinache,et al.  Closed-loop focal plane wavefront control with the SCExAO instrument , 2016, 1604.08787.

[4]  John E. Krist,et al.  Wavefront control performance modeling with WFIRST shaped pupil coronagraph testbed , 2017, Optical Engineering + Applications.

[5]  Pierre Baudoz,et al.  The Self-Coherent Camera: a new tool for planet detection , 2005, Proceedings of the International Astronomical Union.

[6]  R. Galicher,et al.  Review of high-contrast imaging systems for current and future ground- and space-based telescopes I: coronagraph design methods and optical performance metrics , 2018, Astronomical Telescopes + Instrumentation.

[7]  J. Angel,et al.  First On-Sky High-Contrast Imaging with an Apodizing Phase Plate* , 2007, astro-ph/0702324.

[8]  Eric Cady,et al.  Measurements of incoherent light and background structure at exo-Earth detection levels in the High Contrast Imaging Testbed , 2014, Astronomical Telescopes and Instrumentation.

[9]  Frantz Martinache,et al.  Calibration of the island effect: Experimental validation of closed-loop focal plane wavefront control on Subaru/SCExAO , 2017 .

[10]  Frantz Martinache,et al.  On-sky speckle nulling demonstration at small angular separation with SCExAO , 2014 .

[11]  L M Mugnier,et al.  High-order myopic coronagraphic phase diversity (COFFEE) for wave-front control in high-contrast imaging systems. , 2013, Optics express.

[12]  Frantz Martinache,et al.  Speckle Control with a remapped-pupil PIAA-coronagraph , 2012 .

[13]  Christoph U. Keller,et al.  The coronagraphic Modal Wavefront Sensor: a hybrid focal-plane sensor for the high-contrast imaging of circumstellar environments , 2016, 1610.04235.

[14]  Henry Ngo,et al.  On-sky performance of the QACITS pointing control technique with the Keck/NIRC2 vortex coronagraph , 2017, 1701.06397.

[15]  Pierre Baudoz,et al.  Direct detection of exoplanets in polychromatic light with a Self-coherent camera , 2013 .

[16]  Fang Shi,et al.  Shaped pupil coronagraphy for WFIRST: high-contrast broadband testbed demonstration , 2017, Optical Engineering + Applications.

[17]  Olivier Guyon,et al.  Spectral Linear Dark Field Control: Stabilizing Deep Contrast for Exoplanet Imaging Using out-of-band Speckle Field , 2017, 1706.07377.

[18]  Julien Lozi,et al.  First light of the CHARIS high-contrast integral-field spectrograph , 2017, Optical Engineering + Applications.

[19]  J. Krist,et al.  Phase-retrieval analysis of pre- and post-repair Hubble Space Telescope images. , 1995, Applied optics.

[20]  Dimitri Mawet,et al.  Speckle nulling wavefront control for Palomar and Keck , 2016, Astronomical Telescopes + Instrumentation.

[21]  R. Galicher,et al.  Experimental results on wavefront correction using the self-coherent camera , 2012, Other Conferences.

[22]  Julien Lozi,et al.  Demonstration of broadband contrast at 1.2λ/D and greater for the EXCEDE starlight suppression system , 2016, 1709.02459.

[23]  David Mouillet,et al.  Status of the MEDUSAE post-processing method to detect circumstellar objects in high-contrast multispectral images , 2017 .

[24]  Olivier Guyon,et al.  Coronagraph instrument for WFIRST-AFTA , 2016 .

[25]  Pierre Baudoz,et al.  The Self-Coherent Camera : a focal plane sensor for EPICS ? , 2010 .

[26]  T. Fusco,et al.  Compensation of high-order quasi-static aberrations on SPHERE with the coronagraphic phase diversity (COFFEE) , 2014 .

[27]  Jean-Louis Lizon,et al.  The differential tip-tilt sensor of SPHERE , 2010, Astronomical Telescopes + Instrumentation.

[28]  N. Jeremy Kasdin,et al.  Recursive starlight and bias estimation for high-contrast imaging with an extended Kalman filter , 2016, 1602.02044.

[29]  J R Fienup,et al.  Phase retrieval algorithms: a comparison. , 1982, Applied optics.

[30]  R. Galicher,et al.  Estimation and correction of wavefront aberrations using the self-coherent camera: laboratory results , 2013 .

[31]  R. Vanderbei,et al.  Fast computation of Lyot-style coronagraph propagation. , 2007, Optics express.

[32]  Pierre Baudoz,et al.  Experimental parametric study of the self-coherent camera , 2012, Other Conferences.

[33]  R. Galicher,et al.  Focal plane wavefront sensor achromatization: The multireference self-coherent camera , 2016, 1601.07748.

[34]  Pierre Baudoz,et al.  Dark hole and planet detection: laboratory results using the self-coherent camera , 2012, Other Conferences.

[35]  Marie Ygouf,et al.  High-contrast imaging with the JWST-NIRSpec Integral Field Unit , 2017 .

[36]  James Roger P. Angel,et al.  A high-contrast coronagraph for the MMT using phase apodization: design and observations at 5 microns and 2 λ/D radius , 2006, SPIE Astronomical Telescopes + Instrumentation.

[37]  Ruslan Belikov,et al.  Wavefront retrieval through random pupil plane phase probes: Gerchberg-Saxton approach , 2017, 1709.01571.

[38]  R. Galicher,et al.  Wavefront error correction and Earth-like planet detection by a self-coherent camera in space , 2008, 0807.2467.

[39]  Olivier Guyon,et al.  Spatial linear dark field control: stabilizing deep contrast for exoplanet imaging using bright speckles , 2017 .

[40]  G. Perrin,et al.  The Subaru Coronagraphic Extreme Adaptive Optics System: Enabling High-Contrast Imaging on Solar-System Scales , 2015, 1507.00017.

[41]  D. Mawet,et al.  Survey of experimental results in high-contrast imaging for future exoplanet missions , 2013, Optics & Photonics - Optical Engineering + Applications.

[42]  Pierre Baudoz,et al.  Self-coherent camera as a focal plane wavefront sensor: simulations , 2009, 0911.2465.

[43]  A. Caillat,et al.  Laboratory validation of the dual-zone phase mask coronagraph in broadband light at the high-contrast imaging THD-testbed , 2016, 1605.08523.

[44]  Fang Shi,et al.  Hybrid Lyot coronagraph for WFIRST: high-contrast broadband testbed demonstration , 2017, Optical Engineering + Applications.

[45]  A. Caillat,et al.  High contrast imaging on the THD bench: progress and upgrades , 2014, Astronomical Telescopes and Instrumentation.

[46]  R. Galicher,et al.  Expected performance of a self-coherent camera , 2007 .

[47]  David Mouillet,et al.  Simultaneous exoplanet detection and instrument aberration retrieval in multispectral coronagraphic imaging , 2013, 1302.7045.

[48]  Christoph U. Keller,et al.  Designing and testing the coronagraphic Modal Wavefront Sensor: a fast non-common path error sensor for high-contrast imaging , 2016, Astronomical Telescopes + Instrumentation.

[49]  Pierre Baudoz,et al.  Self-coherent camera: first results of a high-contrast imaging bench in visible light , 2010, Astronomical Telescopes + Instrumentation.

[50]  Christoph U. Keller,et al.  The Leiden EXoplanet Instrument (LEXI): a high-contrast high-dispersion spectrograph , 2016, Astronomical Telescopes + Instrumentation.

[51]  M. Kenworthy,et al.  FOCAL PLANE WAVEFRONT SENSING USING RESIDUAL ADAPTIVE OPTICS SPECKLES , 2013, 1303.0527.

[52]  Olivier Guyon,et al.  Wavefront control methods for high-contrast integral field spectroscopy , 2017, Optical Engineering + Applications.

[53]  Brian Kern,et al.  Electric field conjugation in the presence of model uncertainty , 2017, Optical Engineering + Applications.

[54]  Raphael Galicher,et al.  Fast Coherent Differential Imaging on Ground-based Telescopes Using the Self-coherent Camera , 2018, The Astronomical Journal.

[55]  P. Baudoz,et al.  High-contrast imaging in polychromatic light with the self-coherent camera , 2014, 1402.5914.

[56]  Christoph U. Keller,et al.  Focal-plane electric field sensing with pupil-plane holograms , 2016, Astronomical Telescopes + Instrumentation.

[57]  Frantz Martinache,et al.  The Asymmetric Pupil Fourier Wavefront Sensor , 2013, 1303.6678.

[58]  Pierre Baudoz,et al.  Post-coronagraphic tip-tilt sensing for vortex phase masks: The QACITS technique , 2015, 1509.06158.

[59]  P. Baudoz,et al.  Tip-tilt estimation and correction using FQPM coronagraphic images , 2012 .

[60]  Pierre Baudoz,et al.  Status and performance of the THD2 bench in multi-deformable mirror configuration , 2017 .

[61]  Richard A. Frazin Utilization of the wavefront sensor and short-exposure images for simultaneous estimation of quasi-static aberration and exoplanet intensity , 2013 .

[62]  Randall D. Bartos,et al.  Speckle suppression and companion detection using coherent differential imaging , 2016, 1610.00606.

[63]  Nick Cvetojevic,et al.  Review of high-contrast imaging systems for current and future ground-based and space-based telescopes III: technology opportunities and pathways , 2018, Astronomical Telescopes + Instrumentation.

[64]  Amir Give'on,et al.  Pair-wise, deformable mirror, image plane-based diversity electric field estimation for high contrast coronagraphy , 2011, Optical Engineering + Applications.

[65]  Frantz Martinache,et al.  KERNEL PHASE IN FIZEAU INTERFEROMETRY , 2010 .

[66]  Wesley A. Traub,et al.  Speckle nulling for exoplanet detection with space-based coronagraphic telescopes , 2006, SPIE Astronomical Telescopes + Instrumentation.

[67]  L M Mugnier,et al.  Analytical expression of long-exposure adaptive-optics-corrected coronagraphic image. First application to exoplanet detection. , 2010, Journal of the Optical Society of America. A, Optics, image science, and vision.