The Receptor Density Algorithm

This paper describes the biological and theoretical foundations of a new Artificial Immune System the Receptor Density Algorithm. The algorithm is developed with inspiration from T cell signalling processes and has application in anomaly detection. Connections between the Receptor Density Algorithm and kernel density estimation with exponential smoothing are demonstrated. Finally, the paper evaluates the algorithm's performance on two types of anomaly detection problem.

[1]  Shigeo Abe DrEng Pattern Classification , 2001, Springer London.

[2]  Jon Timmis,et al.  Elucidation of T cell signalling models. , 2010, Journal of theoretical biology.

[3]  R. A. Leibler,et al.  On Information and Sufficiency , 1951 .

[4]  J. Stewart,et al.  Rethinking "shape space": evidence from simulated docking suggests that steric shape complementarity is not limiting for antibody-antigen recognition and idiotypic interactions. , 1994, Journal of theoretical biology.

[5]  R. Germain,et al.  The dynamics of T cell receptor signaling: complex orchestration and the key roles of tempo and cooperation. , 1999, Annual review of immunology.

[6]  T. Wagner,et al.  Asymptotically optimal discriminant functions for pattern classification , 1969, IEEE Trans. Inf. Theory.

[7]  David G. Stork,et al.  Pattern Classification , 1973 .

[8]  Jonathan Timmis,et al.  Theoretical advances in artificial immune systems , 2008, Theor. Comput. Sci..

[9]  D. W. Scott,et al.  Multivariate Density Estimation, Theory, Practice and Visualization , 1992 .

[10]  Cliburn Chan,et al.  Cooperative enhancement of specificity in a lattice of T cell receptors , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[11]  C. D. Kemp,et al.  Density Estimation for Statistics and Data Analysis , 1987 .

[12]  Christopher M. Bishop,et al.  Novelty detection and neural network validation , 1994 .

[13]  E. S. Gardner EXPONENTIAL SMOOTHING: THE STATE OF THE ART, PART II , 2006 .

[14]  Jonathan Timmis,et al.  Modelling the Tunability of Early T Cell Signalling Events , 2008, ICARIS.

[15]  S. Elaydi An introduction to difference equations , 1995 .

[16]  Jonathan Timmis,et al.  Chemical Detection Using the Receptor Density Algorithm , 2012, IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews).

[17]  Ofer Feinerman,et al.  Quantitative challenges in understanding ligand discrimination by αβ T cells , 2008 .

[18]  Jonathan Timmis,et al.  An interdisciplinary perspective on artificial immune systems , 2008, Evol. Intell..

[19]  Jayajit Das,et al.  Sensitivity of T cells to antigen and antagonism emerges from differential regulation of the same molecular signaling module , 2007, Proceedings of the National Academy of Sciences.

[20]  Granino A. Korn,et al.  Mathematical handbook for scientists and engineers. Definitions, theorems, and formulas for reference and review , 1968 .

[21]  Peter Hall,et al.  HALL AND PATIL ON THE EFFICIENCY OF ON-LINE DENSITY ESTIMATORS 1505 The problems solved in Sections , 2004 .

[22]  Thomas Stibor,et al.  On the appropriateness of negative selection for anomaly detection and network intrusion detection , 2006 .

[23]  E. Parzen On Estimation of a Probability Density Function and Mode , 1962 .

[24]  Ofer Feinerman,et al.  Quantitative challenges in understanding ligand discrimination by alphabeta T cells. , 2008, Molecular immunology.

[25]  Nick D.L. Owens,et al.  From Biology to Algorithms , 2010 .

[26]  J. L. Hodges,et al.  The Efficiency of Some Nonparametric Competitors of the t-Test , 1956 .

[27]  Chris McEwan,et al.  Representation and decision making in the immune system , 2010 .

[28]  Jonathan Timmis,et al.  Adaptive data-driven error detection in swarm robotics with statistical classifiers , 2011, Robotics Auton. Syst..

[29]  Ronald N Germain,et al.  Modeling T Cell Antigen Discrimination Based on Feedback Control of Digital ERK Responses , 2005, PLoS biology.

[30]  Jeff Dean,et al.  Time Series , 2009, Encyclopedia of Database Systems.