Precursor States of Brain Tumor Initiating Cell Lines Are Predictive of Survival in Xenografts and Associated with Glioblastoma Subtypes

[1]  S. Weiss,et al.  Dual mTORC1/2 Blockade Inhibits Glioblastoma Brain Tumor Initiating Cells In Vitro and In Vivo and Synergizes with Temozolomide to Increase Orthotopic Xenograft Survival , 2014, Clinical Cancer Research.

[2]  N. Grabe,et al.  Aberrant self‐renewal and quiescence contribute to the aggressiveness of glioblastoma , 2014, The Journal of pathology.

[3]  Franziska Michor,et al.  Most human non-GCIMP glioblastoma subtypes evolve from a common proneural-like precursor glioma. , 2014, Cancer cell.

[4]  A. Vescovi,et al.  Glioma stem cells: turpis omen in nomen? (the evil in the name?) , 2014, Journal of internal medicine.

[5]  Shawn M. Gillespie,et al.  Single-cell RNA-seq highlights intratumoral heterogeneity in primary glioblastoma , 2014, Science.

[6]  Erika Pastrana,et al.  Prospective Identification and Purification of Quiescent Adult Neural Stem Cells from Their In Vivo Niche , 2014, Neuron.

[7]  A. Krešo,et al.  Evolution of the cancer stem cell model. , 2014, Cell stem cell.

[8]  Corbin E. Meacham,et al.  Tumour heterogeneity and cancer cell plasticity , 2013, Nature.

[9]  C. Beier,et al.  Glioblastoma cancer stem cells--from concept to clinical application. , 2013, Cancer letters.

[10]  Tom H. Cheung,et al.  Molecular regulation of stem cell quiescence , 2013, Nature Reviews Molecular Cell Biology.

[11]  P. Benos,et al.  Mesenchymal glioma stem cells are maintained by activated glycolytic metabolism involving aldehyde dehydrogenase 1A3 , 2013, Proceedings of the National Academy of Sciences.

[12]  T. Wakabayashi,et al.  Current Trends in Targeted Therapies for Glioblastoma Multiforme , 2012, Neurology research international.

[13]  Daniel J. Hoeppner,et al.  Distribution of CD133 reveals glioma stem cells self-renew through symmetric and asymmetric cell divisions , 2011, Cell Death and Disease.

[14]  Manfred Westphal,et al.  The neurobiology of gliomas: from cell biology to the development of therapeutic approaches , 2011, Nature Reviews Neuroscience.

[15]  A. Vescovi,et al.  Evidence for label-retaining tumour-initiating cells in human glioblastoma. , 2011, Brain : a journal of neurology.

[16]  Hans Clevers,et al.  The cancer stem cell: premises, promises and challenges , 2011, Nature Medicine.

[17]  S. Gabriel,et al.  Integrated genomic analysis identifies clinically relevant subtypes of glioblastoma characterized by abnormalities in PDGFRA, IDH1, EGFR, and NF1. , 2010, Cancer cell.

[18]  S. Weiss,et al.  Proliferation of Human Glioblastoma Stem Cells Occurs Independently of Exogenous Mitogens , 2009, Stem cells.

[19]  Paolo Malatesta,et al.  SOX2 Silencing in Glioblastoma Tumor‐Initiating Cells Causes Stop of Proliferation and Loss of Tumorigenicity , 2009, Stem cells.

[20]  Joshua M. Korn,et al.  Comprehensive genomic characterization defines human glioblastoma genes and core pathways , 2008, Nature.

[21]  Santosh Kesari,et al.  Malignant gliomas in adults. , 2008, The New England journal of medicine.

[22]  M. Westphal,et al.  Glioblastoma-derived stem cell-enriched cultures form distinct subgroups according to molecular and phenotypic criteria , 2008, Oncogene.

[23]  Angelo L. Vescovi,et al.  Brain tumour stem cells , 2006, Nature Reviews Cancer.

[24]  Thomas D. Wu,et al.  Molecular subclasses of high-grade glioma predict prognosis, delineate a pattern of disease progression, and resemble stages in neurogenesis. , 2006, Cancer cell.

[25]  S. Goderie,et al.  Asymmetric Distribution of EGFR Receptor during Mitosis Generates Diverse CNS Progenitor Cells , 2005, Neuron.

[26]  R. Henkelman,et al.  Identification of human brain tumour initiating cells , 2004, Nature.

[27]  Sally Temple,et al.  Asymmetric Numb distribution is critical for asymmetric cell division of mouse cerebral cortical stem cells and neuroblasts. , 2002, Development.

[28]  J. García-Verdugo,et al.  Regeneration of a germinal layer in the adult mammalian brain. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[29]  Daniel A. Lim,et al.  Subventricular Zone Astrocytes Are Neural Stem Cells in the Adult Mammalian Brain , 1999, Cell.

[30]  S. Weiss,et al.  Generation of neurons and astrocytes from isolated cells of the adult mammalian central nervous system. , 1992, Science.