Martingales with values in uniformly convex spaces

Using the techniques of martingale inequalities in the case of Banach space valued martingales, we give a new proof of a theorem of Enflo: every super-reflexive space admits an equivalent uniformly convex norm. Letr be a number in ]2, ∞[; we prove moreover that if a Banach spaceX is uniformly convex (resp. ifδx(ɛ)/ɛr whenɛ → 0) thenX admits for someq<∞ (resp. for someq<r) an equivalent norm for which the corresponding modulus of convexity satisfiesδ(ɛ)/ɛq → ∞ whenɛ → 0. These results have dual analogues concerning the modulus of smoothness. Our method is to study some inequalities for martingales with values in super-reflexive or uniformly convex spaces which are characteristic of the geometry of these spaces up to isomorphism.

[1]  E. C. Titchmarsh Reciprocal formulae involving series and integrals , 1926 .

[2]  Göte Nordlander The modulus of convexity in normed linear spaces , 1960 .

[3]  Anatole Beck,et al.  A convexity condition in Banach spaces and the strong law of large numbers , 1962 .

[4]  Joram Lindenstrauss On the modulus of smoothness and divergent series in Banach spaces. , 1963 .

[5]  D. Burkholder,et al.  Maximal inequalities as necessary conditions for almost everywhere convergence , 1964 .

[6]  Srishti D. Chatterji,et al.  Martingale Convergence and the Radon-Nikodym Theorem in Banach Spaces. , 1968 .

[7]  J. Schäffer,et al.  Reflexivity and the girth of spheres , 1970 .

[8]  Stanisław Kwapień,et al.  Isomorphic characterizations of inner product spaces by orthogonal series with vector valued coefficients , 1972 .

[9]  Per Enflo,et al.  Banach spaces which can be given an equivalent uniformly convex norm , 1972 .

[10]  R. W. James SOME SELF-DUAL PROPERTIES OF NORMED LINEAR SPACES , 1972 .

[11]  R. C. James Super-reflexive spaces with bases. , 1972 .

[12]  T. Figiel An example of infinite dimensional reflexive Banach space non-isomorphic to its Cartesian square , 1972 .

[13]  J. Neveu,et al.  Martingales à temps discret , 1973 .

[14]  Adriano M. Garsia,et al.  Martingale inequalities: seminar notes on recent progress , 1973 .

[15]  A nonreflexive Banach space that is uniformly nonoctahedral , 1974 .

[16]  G. Pisier,et al.  Séries de variables aléatoires vectorielles indépendantes et propriétés géométriques des espaces de Banach , 1976 .