Martingales with values in uniformly convex spaces
暂无分享,去创建一个
[1] E. C. Titchmarsh. Reciprocal formulae involving series and integrals , 1926 .
[2] Göte Nordlander. The modulus of convexity in normed linear spaces , 1960 .
[3] Anatole Beck,et al. A convexity condition in Banach spaces and the strong law of large numbers , 1962 .
[4] Joram Lindenstrauss. On the modulus of smoothness and divergent series in Banach spaces. , 1963 .
[5] D. Burkholder,et al. Maximal inequalities as necessary conditions for almost everywhere convergence , 1964 .
[6] Srishti D. Chatterji,et al. Martingale Convergence and the Radon-Nikodym Theorem in Banach Spaces. , 1968 .
[7] J. Schäffer,et al. Reflexivity and the girth of spheres , 1970 .
[8] Stanisław Kwapień,et al. Isomorphic characterizations of inner product spaces by orthogonal series with vector valued coefficients , 1972 .
[9] Per Enflo,et al. Banach spaces which can be given an equivalent uniformly convex norm , 1972 .
[10] R. W. James. SOME SELF-DUAL PROPERTIES OF NORMED LINEAR SPACES , 1972 .
[11] R. C. James. Super-reflexive spaces with bases. , 1972 .
[12] T. Figiel. An example of infinite dimensional reflexive Banach space non-isomorphic to its Cartesian square , 1972 .
[13] J. Neveu,et al. Martingales à temps discret , 1973 .
[14] Adriano M. Garsia,et al. Martingale inequalities: seminar notes on recent progress , 1973 .
[15] A nonreflexive Banach space that is uniformly nonoctahedral , 1974 .
[16] G. Pisier,et al. Séries de variables aléatoires vectorielles indépendantes et propriétés géométriques des espaces de Banach , 1976 .