On WordNet Semantic Classes and Dependency Parsing

This paper presents experiments with WordNet semantic classes to improve dependency parsing. We study the effect of semantic classes in three dependency parsers, using two types of constituencyto-dependency conversions of the English Penn Treebank. Overall, we can say that the improvements are small and not significant using automatic POS tags, contrary to previously published results using gold POS tags (Agirre et al., 2011). In addition, we explore parser combinations, showing that the semantically enhanced parsers yield a small significant gain only on the more semantically oriented LTH treebank conversion.

[1]  Timothy Baldwin,et al.  Improving Parsing and PP Attachment Performance with Sense Information , 2008, ACL.

[2]  Mihai Surdeanu,et al.  Ensemble Models for Dependency Parsing: Cheap and Good? , 2010, HLT-NAACL.

[3]  Yuji Matsumoto,et al.  Statistical Dependency Analysis with Support Vector Machines , 2003, IWPT.

[4]  Andrew S. Gordon,et al.  Clustering Words by Syntactic Similarity improves Dependency Parsing of Predicate-argument Structures , 2009, IWPT.

[5]  Xavier Carreras,et al.  An Empirical Study of Semi-supervised Structured Conditional Models for Dependency Parsing , 2009, EMNLP.

[6]  Marie Candito,et al.  Parsing Word Clusters , 2010, SPMRL@NAACL-HLT.

[7]  Julie Weeds,et al.  Finding Predominant Word Senses in Untagged Text , 2004, ACL.

[8]  Koby Crammer,et al.  Online Large-Margin Training of Dependency Parsers , 2005, ACL.

[9]  Eugene Charniak,et al.  A Maximum-Entropy-Inspired Parser , 2000, ANLP.

[10]  Xavier Carreras,et al.  Simple Semi-supervised Dependency Parsing , 2008, ACL.

[11]  Alon Lavie,et al.  Parser Combination by Reparsing , 2006, NAACL.

[12]  Richard Johansson,et al.  Extended Constituent-to-Dependency Conversion for English , 2007, NODALIDA.

[13]  Michael Collins,et al.  Head-Driven Statistical Models for Natural Language Parsing , 2003, CL.

[14]  Eneko Agirre,et al.  Improving Dependency Parsing with Semantic Classes , 2011, ACL.

[15]  Jakob Uszkoreit,et al.  Cross-lingual Word Clusters for Direct Transfer of Linguistic Structure , 2012, NAACL.

[16]  Stephan Oepen,et al.  Exploiting Semantic Information for HPSG Parse Selection , 2007, ACL 2007.

[17]  Stephen Clark,et al.  A Tale of Two Parsers: Investigating and Combining Graph-based and Transition-based Dependency Parsing , 2008, EMNLP.

[18]  Fernando Pereira,et al.  Multilingual Dependency Analysis with a Two-Stage Discriminative Parser , 2006, CoNLL.

[19]  Joakim Nivre,et al.  Transition-based Dependency Parsing with Rich Non-local Features , 2011, ACL.

[20]  Michael Collins,et al.  Discriminative Training Methods for Hidden Markov Models: Theory and Experiments with Perceptron Algorithms , 2002, EMNLP.

[21]  Joakim Nivre,et al.  Generalizing Tree Transformations for Inductive Dependency Parsing , 2007, ACL.

[22]  Daniel M. Bikel,et al.  Intricacies of Collins’ Parsing Model , 2004, CL.

[23]  Timothy Baldwin,et al.  The Effects of Semantic Annotations on Precision Parse Ranking , 2012, *SEMEVAL.

[24]  Joakim Nivre,et al.  Single Malt or Blended? A Study in Multilingual Parser Optimization , 2007, EMNLP.

[25]  Yuji Matsumoto MaltParser: A language-independent system for data-driven dependency parsing , 2005 .