Microporous sulfur-doped carbon from thienyl-based polymer network precursors.

Porous sulfur-doped carbon was synthesised by using a thienyl-based polymer network as a precursor. The sulfur amount varies from 5-23 m% while the materials show microporosity with BET surface areas of up to 711 m(2) g(-1).

[1]  R. Jasinski,et al.  A New Fuel Cell Cathode Catalyst , 1964, Nature.

[2]  F. Du,et al.  Nitrogen-Doped Carbon Nanotube Arrays with High Electrocatalytic Activity for Oxygen Reduction , 2009, Science.

[3]  Jeffrey T. Roberts,et al.  Desulfurization of ethylene sulfide on Mo(100): The roles of ring size and strain in adsorbate reaction selectivity , 1988 .

[4]  Edmar P. Marques,et al.  A review of Fe-N/C and Co-N/C catalysts for the oxygen reduction reaction , 2008 .

[5]  M. Antonietti,et al.  Sustainable nitrogen-doped carbon latexes with high electrical and thermal conductivity , 2010 .

[6]  Markus Antonietti,et al.  Porous, covalent triazine-based frameworks prepared by ionothermal synthesis. , 2008, Angewandte Chemie.

[7]  M. Antonietti,et al.  Ionic Liquids as Precursors for Nitrogen‐Doped Graphitic Carbon , 2010, Advanced materials.

[8]  B. M. Dekoven,et al.  XPS studies of metal/polymer interfaces — Thin films of Al on polyacrylic acid and polyethylene , 1986 .

[9]  H. Tsuboi,et al.  Influence of surface chemistry on the electronic properties of graphene nanoflakes , 2010, 1005.5199.

[10]  Yuyan Shao,et al.  Nitrogen-doped carbon nanostructures and their composites as catalytic materials for proton exchange membrane fuel cell , 2008 .

[11]  Identification of electron donor states in N-doped carbon nanotubes , 2000, cond-mat/0011318.

[12]  F. Béguin,et al.  Optimisation of supercapacitors using carbons with controlled nanotexture and nitrogen content , 2006 .

[13]  Umit S. Ozkan,et al.  Non-metal Catalysts for Dioxygen Reduction in an Acidic Electrolyte , 2006 .

[14]  C. Nordling,et al.  Molecular Spectroscopy by Means of ESCA II. Sulfur compounds. Correlation of electron binding energy with structure , 1970 .

[15]  T. J. Moravec,et al.  Electron spectroscopy of ion beam and hydrocarbon plasma generated diamondlike carbon films , 1981 .

[16]  Li Zhao,et al.  Carbon dioxide capture on amine-rich carbonaceous materials derived from glucose. , 2010, ChemSusChem.

[17]  A. Moewes,et al.  Interlayer conduction band states in graphite-sulfur composites , 2002 .

[18]  A. Tressaud,et al.  Fluorination of carbon blacks: An X-ray photoelectron spectroscopy study: I. A literature review of XPS studies of fluorinated carbons. XPS investigation of some reference compounds , 1997 .

[19]  M. C. D. Santos,et al.  Nitrogen-substituted nanotubes and nanojunctions: Conformation and electronic properties , 2006 .

[20]  S. Flandrois,et al.  Synthesis and characterization of boron-substituted carbons , 2000 .

[21]  Pablo A. Denis,et al.  Density Functional Investigation of Thioepoxidated and Thiolated Graphene , 2009 .

[22]  Umit S. Ozkan,et al.  The role of nanostructure in nitrogen-containing carbon catalysts for the oxygen reduction reaction , 2006 .

[23]  Hui-Ming Cheng,et al.  Unique electronic structure induced high photoreactivity of sulfur-doped graphitic C3N4. , 2010, Journal of the American Chemical Society.

[24]  Jeffrey T. Roberts,et al.  Adsorbate thermodynamics as a determinant of reaction mechanism: pentamethYlene sulfide on Mo(110) , 1989 .

[25]  M. Dresselhaus,et al.  Structural systematics in boron-doped single wall carbon nanotubes , 2004 .

[26]  Yz Zhang,et al.  Electronic Structures of S-Doped Capped C-SWNT from First Principles Study , 2010, Nanoscale research letters.

[27]  E. Frąckowiak,et al.  Nanotubes based composites rich in nitrogen for supercapacitor application , 2007 .

[28]  Markus Antonietti,et al.  From microporous regular frameworks to mesoporous materials with ultrahigh surface area: dynamic reorganization of porous polymer networks. , 2008, Journal of the American Chemical Society.

[29]  E. Frąckowiak Carbon materials for supercapacitor application. , 2007, Physical chemistry chemical physics : PCCP.

[30]  A. Anderson,et al.  Nitrogen-Treated Graphite and Oxygen Electroreduction on Pyridinic Edge Sites , 2009 .

[31]  P. Marcus,et al.  An in situ XPS study of sputter-deposited aluminium thin films on graphite , 1994 .

[32]  M. Antonietti,et al.  Nitrogen‐Containing Hydrothermal Carbons with Superior Performance in Supercapacitors , 2010, Advanced materials.

[33]  F. Béguin,et al.  Carbon materials for the electrochemical storage of energy in capacitors , 2001 .

[34]  S. Dai,et al.  Fluidic Carbon Precursors for Formation of Functional Carbon under Ambient Pressure Based on Ionic Liquids , 2010, Advanced materials.

[35]  Tianquan Lin,et al.  A facile preparation route for boron-doped graphene, and its CdTe solar cell application , 2011 .

[36]  M. Antonietti,et al.  A detailed view on the polycondensation of ionic liquid monomers towards nitrogen doped carbon materials , 2010 .

[37]  Pablo A. Denis,et al.  Band gap opening of monolayer and bilayer graphene doped with aluminium, silicon, phosphorus, and sulfur , 2010 .

[38]  S. Dai,et al.  Facile ionothermal synthesis of microporous and mesoporous carbons from task specific ionic liquids. , 2009, Journal of the American Chemical Society.

[39]  E. Frąckowiak,et al.  Effect of nitrogen in carbon electrode on the supercapacitor performance , 2005 .

[40]  M. Antonietti,et al.  Microporous Conjugated Poly(thienylene arylene) Networks , 2009 .

[41]  P. Bertrand,et al.  Is nitrogen important in the formulation of Fe-based catalysts for oxygen reduction in solid polymer fuel cells? , 1997 .

[42]  Cheol-Woong Yang,et al.  Evidence of graphitic AB stacking order of graphite oxides. , 2008, Journal of the American Chemical Society.

[43]  Li Zhao,et al.  Sustainable nitrogen-doped carbonaceous materials from biomass derivatives , 2010 .

[44]  Joseph A. Gardella,et al.  Surface studies of polymer blends. 2. An ESCA and IR study of poly(methyl methacrylate)/poly(vinyl chloride) homopolymer blends , 1989 .