Peeling process of thin-film solar cells using graphene layers

A novel peeling process for thin-film solar cells using graphene layers was demonstrated. We fabricated amorphous silicon (a-Si) solar cells as substitutes for the undeveloped nanostructured silicon solar cells on graphene layers in order to investigate the solar cell performance after peeling for the first time. The graphene layers functioned as transparent electrodes after the peeling process, even though the series resistance increased after the peeling. Next, we fabricated a silicon nanowire (SiNW) array on graphene layers by a combination of chemical etching and thermal crystallization. Finally, we successfully peeled a SiNW array using graphene layers.

[1]  H. Takakura,et al.  Cu(In,Ga)Se2 solar cells with superstrate structure using lift-off process , 2011 .

[2]  Chongwu Zhou,et al.  Continuous, highly flexible, and transparent graphene films by chemical vapor deposition for organic photovoltaics. , 2010, ACS nano.

[3]  Makoto Konagai,et al.  Improvement of Electrical Properties of Silicon Quantum Dot Superlattice Solar Cells with Diffusion Barrier Layers , 2013 .

[4]  Makoto Konagai,et al.  Photoluminescence from Silicon Quantum Dots in Si Quantum Dots/Amorphous SiC Superlattice , 2007 .

[5]  Robert Mertens,et al.  Thermal Oxidation of a Densely Packed Array of Vertical Si Nanowires , 2012 .

[6]  Kwang S. Kim,et al.  Large-scale pattern growth of graphene films for stretchable transparent electrodes , 2009, Nature.

[7]  A. D. Vos,et al.  Detailed balance limit of the efficiency of tandem solar cells , 1980 .

[8]  H. Takakura,et al.  Lift-Off Process for Flexible Cu(In,Ga)Se2 Solar Cells , 2009 .

[9]  M. Konagai,et al.  Preparation of Nanocrystalline Silicon in Amorphous Silicon Carbide Matrix , 2006 .

[10]  Keiji Watanabe,et al.  Enhanced carrier transport by defect passivation in Si/SiO2 nanostructure-based solar cells , 2012 .

[11]  Zhipeng Huang,et al.  Metal‐Assisted Chemical Etching of Silicon: A Review , 2011, Advanced materials.

[12]  O. Gunawan,et al.  Perovskite-kesterite monolithic tandem solar cells with high open-circuit voltage , 2014 .

[13]  Masaki Hirota,et al.  Optical assessment of silicon nanowire arrays fabricated by metal-assisted chemical etching , 2013, Nanoscale Research Letters.

[14]  M. Konagai,et al.  Graphene transparent electrode for thin-film solar cells , 2015 .

[15]  X. Jia,et al.  All-silicon tandem solar cells: practical limits for energy conversion and possible routes for improvement , 2016 .

[16]  S. Banerjee,et al.  Large-Area Synthesis of High-Quality and Uniform Graphene Films on Copper Foils , 2009, Science.

[17]  S. T. Lee,et al.  Fabrication of Single‐Crystalline Silicon Nanowires by Scratching a Silicon Surface with Catalytic Metal Particles , 2006 .

[18]  W. Warta,et al.  Solar cell efficiency tables (Version 45) , 2015 .

[19]  H. Queisser,et al.  Detailed Balance Limit of Efficiency of p‐n Junction Solar Cells , 1961 .

[20]  Narrow Diameter Distribution of Horizontally Aligned Single-Walled Carbon Nanotubes Grown Using Size-Controlled Gold Nanoparticles , 2013 .

[21]  Masaki Hirota,et al.  Improvement of carrier diffusion length in silicon nanowire arrays using atomic layer deposition , 2013, Nanoscale Research Letters.

[22]  B. Sernelius Retarded interactions in graphene systems , 2012, 1204.6150.

[23]  Martin L Dunn,et al.  Ultrastrong adhesion of graphene membranes. , 2011, Nature nanotechnology.

[24]  P. Fauchet,et al.  Thermal crystallization of amorphous Si/SiO2 superlattices , 1999 .

[25]  R. Piner,et al.  Transfer of large-area graphene films for high-performance transparent conductive electrodes. , 2009, Nano letters.

[26]  T. Minemoto,et al.  Impact of optical properties of front glass substrates on Cu(In,Ga)Se2 solar cells using lift-off process , 2013 .

[27]  V. Terrazzoni-Daudrix,et al.  Flexible micromorph tandem a-Si/μc-Si solar cells , 2010 .

[28]  A. Reina,et al.  Large area, few-layer graphene films on arbitrary substrates by chemical vapor deposition. , 2009, Nano letters.

[29]  Masaki Hirota,et al.  Numerical Approach to the Investigation of Performance of Silicon Nanowire Solar Cells Embedded in a SiO2 Matrix , 2012 .

[30]  R. Ruoff,et al.  Structural Analysis of Collapsed, and Twisted and Collapsed, Multiwalled Carbon Nanotubes by Atomic Force Microscopy. , 2001, Physical review letters.

[31]  Chongwu Zhou,et al.  Review of chemical vapor deposition of graphene and related applications. , 2013, Accounts of chemical research.

[32]  Xiaolin Zheng,et al.  Peel-and-Stick: Fabricating Thin Film Solar Cell on Universal Substrates , 2012, Scientific Reports.

[33]  M. Chhowalla,et al.  A review of chemical vapour deposition of graphene on copper , 2011 .

[34]  C. Kaufmann,et al.  Lift-off process and rear-side characterization of CuGaSe2 chalcopyrite thin films and solar cells , 2005 .

[35]  Shui-Tong Lee,et al.  Surface passivation and transfer doping of silicon nanowires. , 2009, Angewandte Chemie.

[36]  T. Zheng,et al.  The present status of Si/ SiO2 superlattice research into optoelectronic applications , 2005 .

[37]  Ali Javey,et al.  Dramatic reduction of surface recombination by in situ surface passivation of silicon nanowires. , 2011, Nano letters.