Discriminating thresholds as a tool to cope with imperfect knowledge in multiple criteria decision aiding: Theoretical results and practical issues

This paper deals with preference modeling. It concerns the concepts of discriminating thresholds as a tool to cope with the imperfect nature of knowledge in decision aiding. Such imperfect knowledge is related with the definition of each criterion as well as with the data we have to take into account. On the one hand, we shall present a useful theoretical synthesis for the analyst in his/her decision aiding activity, and, on the other hand, we shall provide some practical instructions concerning the approach to follow for assigning the values to these discriminating thresholds.

[1]  P. Vincke,et al.  Pseudo-orders: Definition, properties and numerical representation , 1987 .

[2]  R. Luce Three Axiom Systems for Additive Semiordered Structures , 1973 .

[3]  S. Greco,et al.  Extreme ranking analysis in robust ordinal regression , 2012 .

[4]  Didier Dubois,et al.  Risk-informed decision-making in the presence of epistemic uncertainty , 2011, Int. J. Gen. Syst..

[5]  J. Figueira,et al.  A note on the paper, “Ranking irregularities when evaluating alternatives by using some ELECTRE methods”, by Wang and Triantaphyllou, Omega (2008) , 2009 .

[6]  P. Vincke,et al.  Relational Systems of Preference with One or More Pseudo-Criteria: Some New Concepts and Results , 1984 .

[7]  Lucien Yves Maystre,et al.  Méthodes multicritères ELECTRE : description, conseils pratiques et cas d'application à la gestion environnementale , 1994 .

[8]  Patrick Suppes,et al.  Foundations of Measurement, Vol. II: Geometrical, Threshold, and Probabilistic Representations , 1989 .

[9]  Bernard Roy,et al.  Main sources of inaccurate determination, uncertainty and imprecision in decision models , 1989 .

[10]  Bernard Roy,et al.  A programming method for determining which Paris metro stations should be renovated , 1986 .

[11]  L. V. Tavares,et al.  An acyclic outranking model to support group decision making within organizations , 2012 .

[12]  S. Greco,et al.  Multiple Criteria Hierarchy Process with ELECTRE and PROMETHEE , 2013 .

[13]  P. Vincke,et al.  Preference structures and threshold models , 1993 .

[14]  Philippe Vincke,et al.  Multicriteria Decision-aid , 1993 .

[15]  C. J. Hearne Non-conventional Preference Relations in Decision Making , 1989 .

[16]  D. Krantz Extensive Measurement in Semiorders , 1967, Philosophy of Science.

[17]  Philippe Vincke,et al.  {P, Q, I, J} - preference structures , 2000 .

[18]  Malcolm James Beynon,et al.  The lean improvement of the chemical emissions of motor vehicles based on preference ranking: A PROMETHEE uncertainty analysis , 2008 .

[19]  Bernard Roy,et al.  Handling effects of reinforced preference and counter-veto in credibility of outranking , 2008, Eur. J. Oper. Res..

[20]  Matthias Ehrgott,et al.  Multiple criteria decision making for engineering , 2008 .

[21]  Eric Jacquet-Lagrèze,et al.  How We can Use the Notion of Semi-Orders to Build Outranking Relations in Multi-Criteria Decision Making , 1975 .

[22]  Lucien Yves Maystre,et al.  Méthodes multicritères Electre , 1994 .

[23]  Bernard Roy,et al.  La Notion De Seuils De Discrimination En Analyse Multicritère , 1987 .

[24]  Graham K. Rand,et al.  Non-conventional Preference Relations in Decision Making , 1989 .

[25]  Y Levanon,et al.  The indifference band in multiple criteria decision problems , 1980 .

[26]  Denis Bouyssou,et al.  Modelling Inaccurate Determination, Uncertainty, Imprecision Using Multiple Criteria , 1989 .

[27]  S French,et al.  Multicriteria Methodology for Decision Aiding , 1996 .

[28]  Margaret B. Cozzens,et al.  Double Semiorders and Double Indifference Graphs , 1982 .

[29]  E. Triantaphyllou,et al.  Ranking irregularities when evaluating alternatives by using some ELECTRE methods , 2008 .

[30]  Philippe Smets,et al.  Varieties of ignorance and the need for well-founded theories , 1991, Inf. Sci..

[31]  Philippe Vincke,et al.  Preference Modeling , 2009, Encyclopedia of Optimization.

[32]  Alexis Tsoukiàs,et al.  Numerical representation of PQI interval orders , 2005, Discret. Appl. Math..

[33]  Martin Rogers,et al.  Electre and decision support , 1999 .

[34]  Salvatore Greco,et al.  An Overview of ELECTRE Methods and their Recent Extensions , 2013 .

[35]  A. Hatami-Marbini,et al.  An Extension of the Electre I Method for Group Decision-Making Under a Fuzzy Environment , 2011 .

[36]  B. Roy Méthodologie multicritère d'aide à la décision , 1985 .

[37]  Alexis Tsoukiàs,et al.  A Characterization of PQI Interval Orders , 2003, Discret. Appl. Math..

[38]  Jacques Pictet,et al.  Multiple criteria decision analysis of treatment and land-filling technologies for waste incineration residues , 2008 .