Fuzzy Fredholm integro-differential equations with artificial neural networks

In this paper, we use parametric form of fuzzy number, then feed-forward neural network is presented for obtaining approximate solution for fuzzy Fredholm integro-differential equation of the second kind. This paper presents a method based on neural networks and Newton-Cotes methods with positive coefficient. The ability of neural networks in function approximation is our main objective. The proposed method is illustrated by solving some numerical examples.

[1]  Sohrab Effati,et al.  Artificial neural network approach for solving fuzzy differential equations , 2010, Inf. Sci..

[2]  Tofigh Allahviranloo,et al.  Numerical solution of fuzzy differential equations by predictor-corrector method , 2007, Inf. Sci..

[3]  Dimitrios I. Fotiadis,et al.  Artificial neural networks for solving ordinary and partial differential equations , 1997, IEEE Trans. Neural Networks.

[4]  Abraham Kandel,et al.  Numerical solutions of fuzzy differential and integral equations , 1999, Fuzzy Sets Syst..

[5]  M. Puri,et al.  Fuzzy Random Variables , 1986 .

[6]  Saeid Abbasbandy,et al.  Numerical Solution of Fuzzy Differential Equation by Runge-Kutta Method , 2004 .

[7]  Osmo Kaleva Fuzzy differential equations , 1987 .

[8]  Saeid Abbasbandy,et al.  Numerical solution of fully fuzzy linear systems by fuzzy neural network , 2011, Soft Comput..

[9]  Ute St. Clair,et al.  Fuzzy Set Theory: Foundations and Applications , 1997 .

[10]  Akbar Hashemi Borzabadi,et al.  A numerical scheme for a class of nonlinear Fredholm integral equations of the second kind , 2009, J. Comput. Appl. Math..

[11]  Tofigh Allahviranloo,et al.  Toward the existence and uniqueness of solutions of second-order fuzzy differential equations , 2009, Inf. Sci..

[12]  Esmail Babolian,et al.  Numerical method for solving linear Fredholm fuzzy integral equations of the second kind , 2007 .

[13]  W. Congxin,et al.  Embedding problem of fuzzy number space: part II , 1992 .

[14]  Esmail Babolian,et al.  Numerically solution of fuzzy differential equations by Adomian method , 2004, Appl. Math. Comput..

[15]  Yie-Chien Chen,et al.  A model reference control structure using a fuzzy neural network , 1995 .

[16]  Saeid Abbasbandy,et al.  Numerical methods forfuzzy differential inclusions , 2004 .

[17]  Esmail Babolian,et al.  Numerical solution of linear Fredholm fuzzy integral equations of the second kind by Adomian method , 2005, Appl. Math. Comput..

[18]  V. Hutson Integral Equations , 1967, Nature.

[19]  Lotfi A. Zadeh,et al.  On Fuzzy Mapping and Control , 1996, IEEE Trans. Syst. Man Cybern..

[20]  Lotfi A. Zadeh,et al.  The Concepts of a Linguistic Variable and its Application to Approximate Reasoning , 1975 .

[21]  W. Cheney,et al.  Numerical analysis: mathematics of scientific computing (2nd ed) , 1991 .

[22]  Caroline M. Eastman,et al.  Review: Introduction to fuzzy arithmetic: Theory and applications : Arnold Kaufmann and Madan M. Gupta, Van Nostrand Reinhold, New York, 1985 , 1987, Int. J. Approx. Reason..

[23]  A. Kaufmann,et al.  Introduction to fuzzy arithmetic : theory and applications , 1986 .

[24]  Lotfi A. Zadeh,et al.  The concept of a linguistic variable and its application to approximate reasoning-III , 1975, Inf. Sci..

[25]  R. Goetschel,et al.  Elementary fuzzy calculus , 1986 .

[26]  D. Dubois,et al.  Operations on fuzzy numbers , 1978 .

[27]  Pagavathigounder Balasubramaniam,et al.  Existence and uniqueness of a fuzzy solution for the nonlinear fuzzy neutral functional differential equation , 2001 .

[28]  Pagavathigounder Balasubramaniam,et al.  Existence and uniqueness of fuzzy solution for the nonlinear fuzzy integrodifferential equations , 2001, Appl. Math. Lett..

[29]  Tofigh Allahviranloo,et al.  NUMERICAL SOLUTION OF N-ORDER FUZZY DIFFERENTIAL EQUATIONS BY RUNGE-KUTTA METHOD , 2011 .

[30]  Saeid Abbasbandy,et al.  Numerical solution of fuzzy polynomials by fuzzy neural network , 2006, Appl. Math. Comput..

[31]  Maryam Mosleh,et al.  SIMULATION AND EVALUATION OF DUAL FULLY FUZZY LINEAR SYSTEMS BY FUZZY NEURAL NETWORK , 2011 .

[32]  Saeid Abbasbandy,et al.  Numerical solution of a system of fuzzy polynomials by fuzzy neural network , 2008, Inf. Sci..

[33]  D. Dubois,et al.  Towards fuzzy differential calculus part 3: Differentiation , 1982 .

[34]  Maryam Mosleh,et al.  Simulation and evaluation of fuzzy differential equations by fuzzy neural network , 2012, Appl. Soft Comput..

[35]  Maryam Mosleh,et al.  Minimal solution of fuzzy linear system of differential equations , 2012, Neural Computing and Applications.

[36]  Saeid Abbasbandy,et al.  Fuzzy polynomial regression with fuzzy neural networks , 2011 .

[37]  Saeid Abbasbandy,et al.  Evaluation of fuzzy regression models by fuzzy neural network , 2010, J. Comput. Appl. Math..

[38]  J.A. Bernard,et al.  Use of a rule-based system for process control , 1987, IEEE Control Systems Magazine.

[39]  Salih Yalçınbaş,et al.  Approximate solutions of linear Volterra integral equation systems with variable coefficients , 2010 .

[40]  M. I. Berenguer,et al.  Biorthogonal systems for solving Volterra integral equation systems of the second kind , 2011, J. Comput. Appl. Math..

[41]  Christopher T. H. Baker,et al.  A perspective on the numerical treatment of Volterra equations , 2000 .

[42]  Tofigh Allahviranloo,et al.  Evaluation of fully fuzzy regression models by fuzzy neural network , 2011, Neural Computing and Applications.

[43]  Tofigh Allahviranloo,et al.  Toward the existence and uniqueness of solutions of second-order fuzzy volterra integro-differential equations with fuzzy kernel , 2012, Neural Computing and Applications.

[44]  Yanping Chen,et al.  Spectral methods for weakly singular Volterra integral equations with smooth solutions , 2009, J. Comput. Appl. Math..

[45]  J. Kauthen,et al.  Continuous time collocation methods for Volterra-Fredholm integral equations , 1989 .

[46]  Tofigh Allahviranloo,et al.  A new method for solving fuzzy integro-differential equation under generalized differentiability , 2011, Neural Computing and Applications.

[47]  Peter Linz,et al.  Analytical and numerical methods for Volterra equations , 1985, SIAM studies in applied and numerical mathematics.