Upper and Lower Bounds for Solutions of Nonlinear Volterra Convolution Integral Equations with Power Nonlinearity
暂无分享,去创建一个
Stefan Samko | Anatoly A. Kilbas | Megumi Saigo | A. Kilbas | M. Saigo | S. Samko | N. K. Karapetyants | N. Karapetyants | N. Karapetiants
[1] John M. Danskin,et al. Approximation of functions of several variables and imbedding theorems , 1975 .
[2] P. Bushell,et al. Nonlinear Volterra integral equations and the Apéry identities , 1992 .
[3] W. Schneider. The general solution of a non-linear integral equation of convolution type , 1982 .
[4] Anatoly A. Kilbas,et al. On solution of integral equation of Abel-Volterra type , 1995, Differential and Integral Equations.
[5] Anatoly A. Kilbas,et al. On Solution of Nonlinear Abel–Volterra Integral Equation☆ , 1999 .
[6] A. Kilbas,et al. On the Solution of Nonlinear Volterra Convolution Equation with Power Nonlinearity , 1996 .
[7] S. Askhabov. A System of Inhomogeneous Integral Equations of Convolution Type with Power Nonlinearity , 2023, Siberian Mathematical Journal.
[8] W. Okrasinski,et al. On the percolation of water from a cylindrical reservoir into the surrounding soil , 1978 .
[9] W. Okrasinski. On a nonlinear convolution equation occurring in the theory of water percolation , 1980 .
[10] T. MacRobert. Higher Transcendental Functions , 1955, Nature.
[11] P. Bushell,et al. On a class of Volterra and Fredholm non-linear integral equations , 1976, Mathematical Proceedings of the Cambridge Philosophical Society.
[12] W. Okrasinski. Nonlinear Volterra equations and physical applications Appendix: on a extension of Gripenberg's condition , 1989 .