Optimal control of a coupled partial and ordinary differential equations system for the assimilation of polarimetry Stokes vector measurements in tokamak free-boundary equilibrium reconstruction with application to ITER

The modelization of polarimetry Faraday rotation measurements commonly used in tokamak plasma equilibrium reconstruction codes is an approximation to the Stokes model. This approximation is not valid for the foreseen ITER scenarios where high current and electron density plasma regimes are expected. In this work a method enabling the consistent resolution of the inverse equilibrium reconstruction problem in the framework of non-linear free-boundary equilibrium coupled to the Stokes model equation for polarimetry is provided. Using optimal control theory we derive the optimality system for this inverse problem. A sequential quadratic programming (SQP) method is proposed for its numerical resolution. Numerical experiments with noisy synthetic measurements in the ITER tokamak configuration for two test cases, the second of which is an H-mode plasma, show that the method is efficient and that the accuracy of the identification of the unknown profile functions is improved compared to the use of classical Faraday measurements.

[1]  J. A. Leuer,et al.  Development of ITER 15 MA ELMy H-mode inductive scenario , 2008 .

[2]  Gabriel N. Gatica,et al.  The Uncoupling of Boundary Integral and Finite Element Methods for Nonlinear Boundary Value Problems , 1995 .

[3]  Stefaan Poedts,et al.  Principles of Magnetohydrodynamics: With Applications to Laboratory and Astrophysical Plasmas , 2004 .

[4]  J. Blum,et al.  2D interpolation and extrapolation of discrete magnetic measurements with toroidal harmonics for equilibrium reconstruction in a tokamak , 2014 .

[5]  L. L. Lao,et al.  Equilibrium analysis of current profiles in tokamaks , 1990 .

[6]  Blaise Faugeras,et al.  Reconstruction of the equilibrium of the plasma in a Tokamak and identification of the current density profile in real time , 2009, J. Comput. Phys..

[7]  P. J. Mc Carthy,et al.  Analytical solutions to the Grad–Shafranov equation for tokamak equilibrium with dissimilar source functions , 1999 .

[8]  Stefano Coda,et al.  Tokamak equilibrium reconstruction code LIUQE and its real time implementation , 2015 .

[9]  G. Tonetti,et al.  Tokamak equilibrium reconstruction using Faraday rotation measurements , 1988 .

[10]  W. Zwingmann Equilibrium analysis of steady state tokamak discharges , 2003 .

[11]  David W. Swain,et al.  An efficient technique for magnetic analysis of non-circular, high-beta tokamak equilibria , 1982 .

[12]  L. Segal John , 2013, The Messianic Secret.

[13]  Jet Efda Contributors,et al.  Modelling of polarimetry measurements at JET , 2008 .

[14]  S. Segre,et al.  A review of plasma polarimetry—theory and methods , 1999 .

[15]  M. Sugihara,et al.  Optimization of the viewing chord arrangement of the ITER poloidal polarimeter , 2008 .

[16]  A Murari,et al.  Mutual interaction of Faraday rotation and Cotton–Mouton phase shift in JET polarimetric measurements. , 2010, The Review of scientific instruments.

[17]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[18]  A. Murari,et al.  Analysis of Faraday rotation in JET polarimetric measurements , 2011 .

[19]  Jacques Blum Numerical simulation and optimal control in plasma physics : with applications to Tokamaks , 1989 .

[20]  J. L. Luxon,et al.  Magnetic analysis of non-circular cross-section tokamaks , 1982 .

[21]  Virginie Grandgirard,et al.  Modelisation de l'equilibre d'un plasma de tokamak , 1999 .

[22]  V. D. Pustovitov,et al.  Magnetic diagnostics: General principles and the problem of reconstruction of plasma current and pressure profiles in toroidal systems , 2000 .

[23]  L. Zakharov,et al.  Equilibrium of a toroidal plasma with noncircular cross section , 1973 .

[24]  Sylvain Brémond,et al.  Quasi-static free-boundary equilibrium of toroidal plasma with CEDRES++: Computational methods and applications , 2015 .

[25]  Jacques Blum,et al.  Problems and methods of self-consistent reconstruction of tokamak equilibrium profiles from magnetic and polarimetric measurements , 1990 .

[26]  Stephen J. Wright,et al.  Numerical Optimization , 2018, Fundamental Statistical Inference.

[27]  J. B. Lister,et al.  Full tokamak discharge simulation of ITER by combining DINA-CH and CRONOS , 2009 .

[28]  Weixing Ding,et al.  Finite electron temperature effects on interferometric and polarimetric measurements in fusion plasmas , 2007 .

[29]  Jacques Blum,et al.  The self-consistent equilibrium and diffusion code sced , 1981 .

[30]  L. L. Lao,et al.  Separation of β̄p and ℓi in tokamaks of non-circular cross-section , 1985 .

[31]  Stefan Ulbrich,et al.  Optimization with PDE Constraints , 2008, Mathematical modelling.

[32]  Jet Efda Contributors,et al.  The European Integrated Tokamak Modelling (ITM) effort: achievements and first physics results , 2014 .

[33]  Yasunori Kawano,et al.  A new approach of equilibrium reconstruction for ITER , 2011 .

[34]  Stephen C. Jardin,et al.  Computational Methods in Plasma Physics , 2010 .

[35]  V. Shafranov,et al.  Determination of the parameters βI and li in a Tokamak for arbitrary shape of plasma pinch cross-section , 1971 .