Variance reduction techniques in particle-based visual contour tracking

This paper presents a comparative study of three different strategies to improve the performance of particle filters, in the context of visual contour tracking: the unscented particle filter, the Rao-Blackwellized particle filter, and the partitioned sampling technique. The tracking problem analyzed is the joint estimation of the global and local transformation of the outline of a given target, represented following the active shape model approach. The main contributions of the paper are the novel adaptations of the considered techniques on this generic problem, and the quantitative assessment of their performance in extensive experimental work done.

[1]  Andrew Blake,et al.  A probabilistic contour discriminant for object localisation , 1998, Sixth International Conference on Computer Vision (IEEE Cat. No.98CH36271).

[2]  Mansoor Sarhadi,et al.  A non-linear model of shape and motion for tracking finger spelt American sign language , 2002, Image Vis. Comput..

[3]  Rama Chellappa,et al.  Shape and motion driven particle filtering for human body tracking , 2003, 2003 International Conference on Multimedia and Expo. ICME '03. Proceedings (Cat. No.03TH8698).

[4]  N. Gordon,et al.  Novel approach to nonlinear/non-Gaussian Bayesian state estimation , 1993 .

[5]  Jean-Marc Odobez,et al.  Embedding motion in model-based stochastic tracking , 2004, Proceedings of the 17th International Conference on Pattern Recognition, 2004. ICPR 2004..

[6]  Frank Dellaert,et al.  A Rao-Blackwellized Parts-Constellation Tracker , 2006, WDV.

[7]  Tieniu Tan,et al.  An Integrated Traffic and Pedestrian Model-Based Vision System , 1997, BMVC.

[8]  Jun S. Liu,et al.  Sequential Imputations and Bayesian Missing Data Problems , 1994 .

[9]  David Suter,et al.  Contour tracking with automatic motion model switching , 2003, Pattern Recognit..

[10]  Michael Isard,et al.  CONDENSATION—Conditional Density Propagation for Visual Tracking , 1998, International Journal of Computer Vision.

[11]  Eric Moulines,et al.  Comparison of resampling schemes for particle filtering , 2005, ISPA 2005. Proceedings of the 4th International Symposium on Image and Signal Processing and Analysis, 2005..

[12]  Andrew Blake,et al.  Learning Dynamics of Complex Motions from Image Sequences , 1996, ECCV.

[13]  Thomas B. Schön,et al.  Marginalized particle filters for mixed linear/nonlinear state-space models , 2005, IEEE Transactions on Signal Processing.

[14]  Baoxin Li,et al.  Adaptive Rao–Blackwellized Particle Filter and Its Evaluation for Tracking in Surveillance , 2007, IEEE Transactions on Image Processing.

[15]  Yong Rui,et al.  Better proposal distributions: object tracking using unscented particle filter , 2001, Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. CVPR 2001.

[16]  Arnaud Doucet,et al.  Particle filters for state estimation of jump Markov linear systems , 2001, IEEE Trans. Signal Process..

[17]  Nando de Freitas,et al.  The Unscented Particle Filter , 2000, NIPS.

[18]  J. Odobez,et al.  Embedding Motion in Model-Based Stochastic Tracking , 2004, IEEE Transactions on Image Processing.

[19]  Namrata Vaswani,et al.  Particle Filter with Mode Tracker(PF-MT) for Visual Tracking Across Illumination Change , 2007, 2007 IEEE International Conference on Acoustics, Speech and Signal Processing - ICASSP '07.

[20]  Andrew Blake,et al.  Learning dynamical models using expectation-maximisation , 1998, Sixth International Conference on Computer Vision (IEEE Cat. No.98CH36271).

[21]  Kai-Tai Song,et al.  Real-time image tracking for automatic traffic monitoring and enforcement applications , 2004, Image Vis. Comput..

[22]  Serge J. Belongie,et al.  Tracking multiple mouse contours (without too many samples) , 2005, 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05).

[23]  Namrata Vaswani,et al.  Time-varying Finite Dimensional Basis for Tracking Contour Deformations , 2006, Proceedings of the 45th IEEE Conference on Decision and Control.

[24]  F. Dellaert,et al.  A Rao-Blackwellized particle filter for EigenTracking , 2004, CVPR 2004.

[25]  Jun S. Liu,et al.  Sequential Monte Carlo methods for dynamic systems , 1997 .

[26]  F. Ghoreishi,et al.  The Tau method and a new preconditioner , 2004 .

[27]  Daniel Cremers,et al.  Dynamical statistical shape priors for level set-based tracking , 2006, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[28]  Daniel Gatica-Perez,et al.  Order Matters: A Distributed Sampling Method for Multi-Object Tracking , 2004, BMVC.

[29]  A. Yezzi,et al.  On the relationship between parametric and geometric active contours , 2000, Conference Record of the Thirty-Fourth Asilomar Conference on Signals, Systems and Computers (Cat. No.00CH37154).

[30]  Francesc Moreno-Noguer,et al.  Dependent Multiple Cue Integration for Robust Tracking , 2008, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[31]  John MacCormick Stochastic algorithms for visual tracking: probabilistic modelling and stochastic algorithms for visual localisation and tracking , 2000 .

[32]  Stan Sclaroff,et al.  Skin color-based video segmentation under time-varying illumination , 2004, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[33]  Namrata Vaswani,et al.  IEEE TRANSACTIONS ON IMAGE PROCESSING 1 A Generic Framework for Tracking using Particle Filter with Dynamic Shape Prior , 2022 .

[34]  A. Hero,et al.  Multitarget tracking using the joint multitarget probability density , 2005, IEEE Transactions on Aerospace and Electronic Systems.

[35]  Neil J. Gordon,et al.  A tutorial on particle filters for online nonlinear/non-Gaussian Bayesian tracking , 2002, IEEE Trans. Signal Process..

[36]  Guillermo Sapiro,et al.  Geodesic Active Contours , 1995, International Journal of Computer Vision.

[37]  Simon J. Godsill,et al.  On sequential Monte Carlo sampling methods for Bayesian filtering , 2000, Stat. Comput..

[38]  Mark R. Morelande,et al.  Improved particle filtering schemes for target tracking , 2005, Proceedings. (ICASSP '05). IEEE International Conference on Acoustics, Speech, and Signal Processing, 2005..

[39]  William Fitzgerald,et al.  A Bayesian approach to tracking multiple targets using sensor arrays and particle filters , 2002, IEEE Trans. Signal Process..

[40]  Rachid Deriche,et al.  Geodesic active regions and level set methods for motion estimation and tracking , 2005, Comput. Vis. Image Underst..

[41]  Michael Isard,et al.  Contour Tracking by Stochastic Propagation of Conditional Density , 1996, ECCV.

[42]  Jorge S. Marques,et al.  Robust Shape Tracking With Multiple Models in Ultrasound Images , 2008, IEEE Transactions on Image Processing.

[43]  A. Doucet,et al.  Sequential MCMC for Bayesian model selection , 1999, Proceedings of the IEEE Signal Processing Workshop on Higher-Order Statistics. SPW-HOS '99.

[44]  Demetri Terzopoulos,et al.  Snakes: Active contour models , 2004, International Journal of Computer Vision.

[45]  Dorin Comaniciu,et al.  An information fusion framework for robust shape tracking , 2005, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[46]  Jouko Lampinen,et al.  Rao-Blackwellized particle filter for multiple target tracking , 2007, Inf. Fusion.

[47]  G. Kitagawa Monte Carlo Filter and Smoother for Non-Gaussian Nonlinear State Space Models , 1996 .

[48]  Namrata Vaswani,et al.  Particle Filtering for Large-Dimensional State Spaces With Multimodal Observation Likelihoods , 2008, IEEE Transactions on Signal Processing.

[49]  Peihua Li,et al.  Visual contour tracking based on particle filters , 2003, Image Vis. Comput..

[50]  Étienne Mémin,et al.  Partial Linear Gaussian Models for Tracking in Image Sequences Using Sequential Monte Carlo Methods , 2006, International Journal of Computer Vision.

[51]  Fredrik Gustafsson,et al.  Particle filters for positioning, navigation, and tracking , 2002, IEEE Trans. Signal Process..

[52]  Kevin P. Murphy,et al.  Bayesian Map Learning in Dynamic Environments , 1999, NIPS.

[53]  Simon J. Godsill,et al.  On sequential simulation-based methods for Bayesian filtering , 1998 .

[54]  Nando de Freitas,et al.  Sequential Monte Carlo Methods in Practice , 2001, Statistics for Engineering and Information Science.

[55]  Adam Baumberg,et al.  Learning deformable models for tracking human motion , 1996 .

[56]  L. Tierney,et al.  Accurate Approximations for Posterior Moments and Marginal Densities , 1986 .

[57]  Namrata Vaswani,et al.  Tracking Deforming Objects Using Particle Filtering for Geometric Active Contours , 2007, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[58]  Michael Isard,et al.  Partitioned Sampling, Articulated Objects, and Interface-Quality Hand Tracking , 2000, ECCV.

[59]  Christian Musso,et al.  Improving Regularised Particle Filters , 2001, Sequential Monte Carlo Methods in Practice.

[60]  Tao Zhang,et al.  Improving performance of distribution tracking through background mismatch , 2005, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[61]  Tao Zhang,et al.  Active contours for tracking distributions , 2004, IEEE Transactions on Image Processing.

[62]  P. Fearnhead,et al.  An improved particle filter for non-linear problems , 1999 .