Linkedness and Ordered Cycles in Digraphs
暂无分享,去创建一个
[1] Alexandr V. Kostochka,et al. An extremal problem for H‐linked graphs , 2005, J. Graph Theory.
[2] Michael S. Jacobson,et al. Linear forests and ordered cycles , 2004, Discuss. Math. Graph Theory.
[3] Daniela Kühn,et al. k-Ordered Hamilton cycles in digraphs , 2007, J. Comb. Theory, Ser. B.
[4] Gregory Gutin,et al. Some Parameterized Problems On Digraphs , 2008, Comput. J..
[5] Ken-ichi Kawarabayashi,et al. On Sufficient Degree Conditions for a Graph to be $k$-linked , 2006, Combinatorics, Probability and Computing.
[6] H. Jung. Eine Verallgemeinerung desn-fachen Zusammenhangs für Graphen , 1970 .
[7] Colton Magnant,et al. Pan-H-Linked Graphs , 2010, Graphs Comb..
[8] Yannis Manoussakis,et al. k-Linked and k-cyclic digraphs , 1990, J. Comb. Theory, Ser. B.
[9] Paul Wollan,et al. An improved linear edge bound for graph linkages , 2005, Eur. J. Comb..
[10] Hong Wang,et al. Vertex-Disjoint Cycles Containing Specified Edges , 2000, Graphs Comb..
[11] Gregory Gutin,et al. Digraphs - theory, algorithms and applications , 2002 .
[12] Carsten Thomassen,et al. Highly connected non-2-linked digraphs , 1991, Comb..
[13] Gábor N. Sárközy,et al. On k-ordered Hamiltonian graphs , 1999, J. Graph Theory.
[14] John E. Hopcroft,et al. The Directed Subgraph Homeomorphism Problem , 1978, Theor. Comput. Sci..
[15] Alexandr V. Kostochka,et al. Minimum degree conditions for H-linked graphs , 2005, Discret. Appl. Math..
[16] M. Meyniel. Une condition suffisante d'existence d'un circuit hamiltonien dans un graphe oriente , 1973 .
[17] Thor Whalen,et al. Graphs and Combinatorics , 2007 .
[18] Marie-Claude Heydemann,et al. About some cyclic properties in digraphs , 1985, J. Comb. Theory, Ser. B.
[19] Alexandr V. Kostochka,et al. On Minimum Degree Implying That a Graph is H-Linked , 2006, SIAM J. Discret. Math..
[20] Béla Bollobás,et al. Highly linked graphs , 1996, Comb..
[21] Michael Ferrara,et al. On H-Linked Graphs , 2006, Graphs Comb..