Parametric estimation in noisy blind deconvolution model: a new estimation procedure

In a parametric framework, the paper is devoted to the study of a new estimation procedure for the inverse filter and the level noise in a complex noisy blind discrete deconvolution model. Our estimation method is a consequence of the sharp exploitation of the specifical properties of the Hankel forms. The distribution of the input signal is also estimated. The strong consistency and the asymptotic distribution of all estimates are established. A consistent simulation study is added in order to demonstrate empirically the computational performance of our estimation procedures. AMS 2000 subject classifications: Primary 62M10 62M09, 62F12Secondary 60E07.

[1]  Emmanuelle Gautherat Déconvolution Aveugle Bruitée : Estimation de la Distribution du Processus Source , 2002 .

[2]  Ta-Hsin Li,et al.  A blind equalizer for nonstationary discrete-valued signals , 1997, IEEE Trans. Signal Process..

[3]  S. Frühwirth-Schnatter Markov chain Monte Carlo Estimation of Classical and Dynamic Switching and Mixture Models , 2001 .

[4]  Fabrice Gamboa,et al.  Blind deconvolution of discrete linear systems , 1996 .

[5]  Ta‐Hsin Li Blind Deconvolution of Linear Systems with Multilevel Nonstationary Inputs , 1995 .

[6]  Ta-Hsin Li,et al.  Finite-alphabet information and multivariate blind deconvolution and identification of linear systems , 2003, IEEE Trans. Inf. Theory.

[7]  Ta‐Hsin Li ESTIMATION AND BLIND DECONVOLUTION OF AUTOREGRESSIVE SYSTEMS WITH NONSTATIONARY BINARY INPUTS , 1993 .

[8]  Elisabeth Gassiat,et al.  Identification of Noisy Linear Systems with Discrete Random Input , 1998, IEEE Trans. Inf. Theory.

[9]  Ta-Hsin Li,et al.  Blind identification and deconvolution of linear systems driven by binary random sequences , 1992, IEEE Trans. Inf. Theory.

[10]  Rong Chen,et al.  Blind restoration of linearly degraded discrete signals by Gibbs sampling , 1995, IEEE Trans. Signal Process..

[11]  Fabrice Gamboa,et al.  BAYESIAN METHODS AND MAXIMUM ENTROPY FOR ILL-POSED INVERSE PROBLEMS , 1997 .

[12]  Ta-Hsin Li Analysis of a nonparametric blind equalizer for discrete-valued signals , 1999, IEEE Trans. Signal Process..

[13]  Abel M. Rodrigues Matrix Algebra Useful for Statistics , 2007 .

[14]  Fabrice Gamboa,et al.  Source separation when the input sources are discrete or have constant modulus , 1997, IEEE Trans. Signal Process..

[15]  Jun S. Liu,et al.  Blind Deconvolution via Sequential Imputations , 1995 .

[16]  A. Lee Swindlehurst,et al.  Recursive blind symbol estimation of convolutionally coded cochannel signals , 2000, IEEE Trans. Signal Process..

[17]  Ker-Chau Li,et al.  Monte Carlo Deconvolution of Digital Signals Guided by the Inverse Filter , 2001 .