An event-driven algorithm for fractal cluster formation

A new cluster based event-driven algorithm is developed to simulate the formation of clusters in a two dimensional gas: particles move freely until they collide and "stick" together irreversibly. These clusters aggregate into bigger structures in an isotompic way, forming fractal structures whose fractal dimension depends on the initial density of the system.

[1]  Paul Meakin,et al.  Some universality properties associated with the cluster-cluster aggregation model , 1984 .

[2]  A. Schmidt‐Ott,et al.  In situ measurement of the fractal dimensionality of ultrafine aerosol particles , 1988 .

[3]  D Bonamy,et al.  Multiscale clustering in granular surface flows. , 2002, Physical review letters.

[4]  L. Sander,et al.  Diffusion-limited aggregation , 1983 .

[5]  Cristiano De Michele,et al.  Simulating hard rigid bodies , 2009, J. Comput. Phys..

[6]  Boris D. Lubachevsky,et al.  How to Simulate Billiards and Similar Systems , 1991, ArXiv.

[7]  S. González,et al.  Extended event driven molecular dynamics for simulating dense granular matter , 2009, 1012.4844.

[8]  R. Rosenfeld Nature , 2009, Otolaryngology--head and neck surgery : official journal of American Academy of Otolaryngology-Head and Neck Surgery.

[9]  S Luding,et al.  Cluster growth in two- and three-dimensional granular gases. , 2004, Physical review. E, Statistical, nonlinear, and soft matter physics.

[10]  Jeremy Schofield,et al.  Discontinuous molecular dynamics for semiflexible and rigid bodies. , 2006, The Journal of chemical physics.

[11]  Andrew G. Glen,et al.  APPL , 2001 .

[12]  Young,et al.  Statistics of ballistic agglomeration. , 1990, Physical review letters.

[13]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[14]  Alexander G. G. M. Tielens,et al.  The Physics of Dust Coagulation and the Structure of Dust Aggregates in Space , 1997 .

[15]  T. Schwager,et al.  Computational Granular Dynamics: Models and Algorithms , 2005 .

[16]  Sharon C. Glotzer,et al.  Measurement of growing dynamical length scales and prediction of the jamming transition in a granular material , 2007, 1012.4830.

[17]  Hansen,et al.  Dynamic scaling behavior of ballistic coalescence. , 1995, Physical review letters.

[18]  U. Landman,et al.  Formation, stability, and breakup of nanojets , 2000, Science.

[19]  Haye Hinrichsen,et al.  Agglomeration of oppositely charged particles in nonpolar liquids. , 2004, Physical review. E, Statistical, nonlinear, and soft matter physics.

[20]  Heinrich M. Jaeger,et al.  High-speed tracking of rupture and clustering in freely falling granular streams , 2009, Nature.