Rheology of a dilute suspension of axisymmetric Brownian particles

Abstract Explicit results are presented for the complete rheological properties of dilute suspensions of rigid, axisymmetric Brownian particles possessing fore-aft symmetry, when suspended in a Newtonian liquid subjected to a general three-dimensional shearing flow, either steady or unsteady. It is demonstrated that these rheological properties can be expressed in terms of five fundamental material constants (exclusive of the solvent viscosity), which depend only upon the sizes and shapes of the suspended particles. Expressions are presented for these scalar constants for a number of solids of revolution, including spheroids, dumbbells of arbitrary aspect ratio and long slender bodies. These are employed to calculate rheological properties for a variety of different shear flows, including uniaxial and biaxial extensional flows, simple shear flows, and general two-dimensional shear flows. It is demonstrated that the rheological properties appropriate to a general two-dimensional shear flow can be deduced immediately from those for a simple shear flow. This observation greatly extends the utility of much of the prior Couette flow literature, especially the extensive numerical calculations of Scheraga et al. (1951, 1955). The commonality of many disparate results dispersed and diffused in earlier publications is emphasized, and presented from a unified hydrodynamic viewpoint.

[1]  R. G. Cox The motion of long slender bodies in a viscous fluid Part 1. General theory , 1970, Journal of Fluid Mechanics.

[2]  S. Wakiya Slow Motion in Shear Flow of a Doublet of Two Spheres in Contact , 1971 .

[3]  F. T. Trouton,et al.  On the coefficient of viscous traction and its relation to that of viscosity , 1906 .

[4]  R. Armstrong,et al.  Stress tensor for arbitrary flows of dilute solutions of rodlike macromolecules , 1973 .

[5]  N. Mclachlan Bessel functions for engineers , 1934 .

[6]  S. Majumdar Slow motion of an incompressible viscous liquid generated by the rotation of two spheres in contact , 1967 .

[7]  S. Majumdar,et al.  On the Stokes resistance of two equal spheres in contact in a linear shear field , 1972 .

[8]  L. G. Leal,et al.  The rheology of a suspension of nearly spherical particles subject to Brownian rotations , 1972, Journal of Fluid Mechanics.

[9]  S. Wakiya Viscosity of Suspension for Doublets of Two Equal-Sized Spheres , 1972 .

[10]  R. G. Cox,et al.  The kinetics of flowing dispersions. VI. Transient orientation and rheological phenomena of rods and discs in shear flow , 1973 .

[11]  F. Bretherton The motion of rigid particles in a shear flow at low Reynolds number , 1962, Journal of Fluid Mechanics.

[12]  H. Brenner Slow viscous rotation of an axisymmetric body within a circular cylinder of finite length , 1964 .

[13]  W. Kuhn,et al.  Die Abhängigkeit der Viskosität vom Strömungsgefälle bei hochverdünnten Suspensionen und Lösungen , 1945 .

[14]  H. Brenner DYNAMICS OF NEUTRALLY BUOYANT PARTICLES IN LOW REYNOLDS NUMBER FLOWS , 1972 .

[15]  L. G. Leal,et al.  Time-dependent shear flows of a suspension of particles with weak Brownian rotations , 1973, Journal of Fluid Mechanics.

[16]  R. Simha,et al.  The Influence of Brownian Movement on the Viscosity of Solutions. , 1940 .

[17]  H. Giesekus Strömungen mit konstantem Geschwindigkeitsgradienten und die Bewegung von darin suspendierten Teilchen , 1962 .

[18]  E. J. Hinch,et al.  The effect of weak Brownian rotations on particles in shear flow , 1971, Journal of Fluid Mechanics.

[19]  H. Giesekus Strömungen mit konstantem Geschwindigkeitsgradienten und die Bewegung von darin suspendierten Teilchen , 1962 .

[20]  Andreas Acrivos,et al.  The constitutive equation for a dilute emulsion , 1970, Journal of Fluid Mechanics.

[21]  Andreas Acrivos,et al.  On the creeping motion of two arbitrary-sized touching spheres in a linear shear field , 1973, Journal of Fluid Mechanics.

[22]  H. Brenner Dissipation of Energy due to Solid Particles Suspended in a Viscous Liquid , 1958 .

[23]  Geoffrey Ingram Taylor,et al.  The formation of emulsions in definable fields of flow , 1934 .

[24]  J. Goddard,et al.  Nonlinear effects in the rheology of dilute suspensions , 1967, Journal of Fluid Mechanics.

[25]  H. A. Stuart,et al.  Zur Theorie der Strömungsdoppelbrechung von Kolloiden und großen Molekülen in Lösung , 1939 .

[26]  Howard Brenner,et al.  The slow motion of a sphere through a viscous fluid towards a plane surface. II - Small gap widths, including inertial effects. , 1967 .

[27]  D. W. Condiff,et al.  Transport mechanics in systems of orientable particles. IV. convective transport , 1974 .

[28]  E. Hinch Note on the symmetries of certain material tensors for a particle in Stokes flow , 1972, Journal of Fluid Mechanics.

[29]  H. Brenner Orientation-space boundary layers in problems of rotational diffusion and convection at large rotary Péclet numbers , 1970 .

[30]  H. R. Warner,et al.  Kinetic theory and rheology of dumbbell suspensions with Brownian motion , 1971 .

[31]  H. Brenner The Stokes resistance of an arbitrary particle—II: An extension , 1964 .

[32]  B. D. Coleman,et al.  Viscometric Flows of Non-Newtonian Fluids , 1966 .

[33]  Howard Brenner,et al.  Coupling between the translational and rotational brownian motions of rigid particles of arbitrary shape: II. General theory , 1967 .

[34]  H. Wayland Streaming Birefringence of Rigid Macromolecules in General Two‐Dimensional Laminar Flow , 1960 .

[35]  H. R. Warner,et al.  Hydrodynamic Interaction Effects in Rigid Dumbbell Suspensions. I. Kinetic Theory , 1971 .

[36]  H. A. Stuart,et al.  Über die Bestimmung der Größe und Form, sowie der elektrischen, optischen und magnetischen Anisotropie von submikroskopischen Teilchen mit Hilfe der künstlichen Doppelbrechung und der inneren Reibung , 1939 .

[37]  R. G. Cox The motion of long slender bodies in a viscous fluid. Part 2. Shear flow , 1971, Journal of Fluid Mechanics.

[38]  Howard Brenner,et al.  The Stokes resistance of an arbitrary particle—III: Shear fields , 1964 .

[39]  P. Mazur,et al.  Non-equilibrium thermodynamics, , 1963 .

[40]  S. G. Mason,et al.  Particle Motions in Sheared Suspensions. XXIV. Rotation of Rigid Spheroids and Cylinders , 1968 .

[41]  H. Giesekus Elasto-viskose Flüssigkeiten, für die in stationären Schichtströmungen sämtliche Normalspannungskomponenten verschieden groß sind , 1962 .

[42]  Howard Brenner,et al.  Suspension rheology in the presence of rotary Brownian motion and external couples: elongational flow of dilute suspensions , 1972 .

[43]  R. G. Cox,et al.  The slow motion of two identical arbitrarily oriented spheres through a viscous fluid , 1966 .

[44]  Howard Brenner,et al.  The Stokes resistance of an arbitrary particle , 1964 .

[45]  L. G. Leal,et al.  A note on streaming double refraction in a dilute suspension of rigid spheroids subject to weak Brownian rotations , 1972 .

[46]  W. E. Stewart,et al.  Hydrodynamic Interaction Effects in Rigid Dumbbell Suspensions. II. Computations for Steady Shear Flow , 1972 .

[47]  A. Love A treatise on the mathematical theory of elasticity , 1892 .

[48]  J. Gillis,et al.  Integrals of Bessel Functions , 1963 .

[49]  S. Timoshenko,et al.  Theory of elasticity , 1975 .

[50]  I. S. Gradshteyn,et al.  Table of Integrals, Series, and Products , 1976 .

[51]  J. C. Jaeger,et al.  Conduction of Heat in Solids , 1952 .

[52]  A. Einstein Eine neue Bestimmung der Moleküldimensionen , 1905 .

[53]  G. Batchelor,et al.  The stress system in a suspension of force-free particles , 1970, Journal of Fluid Mechanics.

[54]  Ronald S. Rivlin,et al.  Further Remarks on the Stress-Deformation Relations for Isotropic Materials , 1955 .

[55]  J. Happel,et al.  Low Reynolds number hydrodynamics , 1965 .

[56]  H. Giesekus Die rheologische Zustandsgleichung , 1958 .

[57]  E. J. Hinch,et al.  The effect of Brownian motion on the rheological properties of a suspension of non-spherical particles , 1972, Journal of Fluid Mechanics.

[58]  H. Scheraga Non‐Newtonian Viscosity of Solutions of Ellipsoidal Particles , 1955 .

[59]  Myrne R. Riley Legendre coefficients for series solution of the orientation distribution function for ellipsoidal macromolecules in two-dimensional laminar flow , 1973 .

[60]  S. Majumdar,et al.  Asymmetrical slow viscous fluid motions caused by the translation or rotation of two spheres. Part II: Asymptotic forms of the solutions when the minimum clearance between the spheres approaches zero , 1970 .

[61]  G. B. Jeffery The motion of ellipsoidal particles immersed in a viscous fluid , 1922 .

[62]  H. Scheraga,et al.  Double Refraction of Flow: Numerical Evaluation of Extinction Angle and Birefringence as a Function of Velocity Gradient , 1951 .

[63]  R. G. Cox,et al.  The rheology of a suspension of particles in a Newtonian fluid , 1971 .

[64]  R. Simha The Influence of Molecular Flexibility on the Intrinsic Viscosity, Sedimentation, and Diffusion of High Polymers , 1945 .

[65]  Albert Einstein,et al.  Berichtigung zu meiner Arbeit: „Eine neue Bestimmung der Moleküldimensionen”︁ [AdP 34, 591 (1911)] , 2005, Annalen der Physik.

[66]  G. Schwarz Zur Theorie der LeitfÄhigkeitsanisotropie von Polyelektrolyten in Lösung , 1956 .

[67]  S. G. Mason,et al.  PARTICLE MOTIONS IN SHEARED SUSPENSIONS: XVI. ORIENTATIONS OF RODS AND DISKS IN HYPERBOLIC AND OTHER FLOWS , 1965 .