Solid State Gas Sensor Research in Germany – a Status Report

This status report overviews activities of the German gas sensor research community. It highlights recent progress in the field of potentiometric, amperometric, conductometric, impedimetric, and field effect-based gas sensors. It is shown that besides step-by-step improvements of conventional principles, e.g. by the application of novel materials, novel principles turned out to enable new markets. In the field of mixed potential gas sensors, novel materials allow for selective detection of combustion exhaust components. The same goal can be reached by using zeolites for impedimetric gas sensors. Operando spectroscopy is a powerful tool to learn about the mechanisms in n-type and in p-type conductometric sensors and to design knowledge-based improved sensor devices. Novel deposition methods are applied to gain direct access to the material morphology as well as to obtain dense thick metal oxide films without high temperature steps. Since conductometric and impedimetric sensors have the disadvantage that a current has to pass the gas sensitive film, film morphology, electrode materials, and geometrical issues affect the sensor signal. Therefore, one tries to measure directly the Fermi level position either by measuring the gas-dependent Seebeck coefficient at high temperatures or at room temperature by applying a modified miniaturized Kelvin probe method, where surface adsorption-based work function changes drive the drain-source current of a field effect transistor.

[1]  P. T. Moseley,et al.  Gas sensors based on oxides of early transition metals , 1989 .

[2]  David E. Williams Semiconducting oxides as gas-sensitive resistors , 1999 .

[3]  Xiaowen Xu,et al.  Zeolite-based Materials for Gas Sensors , 2006 .

[4]  H. S. Wolff,et al.  iRun: Horizontal and Vertical Shape of a Region-Based Graph Compression , 2022, Sensors.

[5]  Ralf Moos,et al.  Zeolithe zur Ammoniakdetektion in Abgasen , 2008 .

[6]  Jens Zosel,et al.  Response behavior of perovskites and Au/oxide composites as HC-electrodes in different combustibles , 2004 .

[7]  Gunter Hagen,et al.  Zeolites for Sensors for Reducing Gases , 2006 .

[8]  Ralf Moos,et al.  A Brief Overview on Automotive Exhaust Gas Sensors Based on Electroceramics , 2005 .

[9]  Ralf Moos,et al.  Selective ammonia exhaust gas sensor for automotive applications , 2002 .

[10]  Wolfgang Göpel,et al.  Electrodes for oxygen sensors based on rate earth manganites or cabaltites , 1993 .

[11]  Andreas Frantzen,et al.  Wet Chemical Synthesis and Screening of Thick Porous Oxide Films for Resistive Gas Sensing Applications , 2006, Sensors (Basel, Switzerland).

[12]  Maximilian Fleischer,et al.  Investigation of the reaction mechanisms in work function type sensors at room temperature by studies of the cross-sensitivity to oxygen and water: the carbonate–carbon dioxide system , 2000 .

[13]  Ulrich Simon,et al.  Advances in high throughput screening of gas sensing materials , 2007 .

[14]  Tilman Sauerwald,et al.  Selectivity enhancement of gas sensors using non-equilibrium polarisation effects in metal oxide films , 2007 .

[15]  Maria Luisa Grilli,et al.  Non-Nernstian planar sensors based on YSZ with a Nb2O5 electrode , 2008 .

[16]  Udo Weimar,et al.  Copper phthalocyanine suspended gate field effect transistors for NO2 detection , 2006 .

[17]  Thorsten Wagner,et al.  Ordered Mesoporous In2O3: Synthesis by Structure Replication and Application as a Methane Gas Sensor , 2009 .

[18]  Maximilian Fleischer,et al.  TiN in work function type sensors: a stable ammonia sensitive material for room temperature operation with low humidity cross sensitivity , 2000 .

[19]  L. N. Yannopoulos A p-type semiconductor thick film gas sensor , 1987 .

[20]  W. E. Ford,et al.  Optical and electrical properties of three-dimensional interlinked gold nanoparticle assemblies. , 2004, Journal of the American Chemical Society.

[21]  Jun Akedo,et al.  Microstructure and Electrical Properties of Lead Zirconate Titanate (Pb(Zr52/Ti48)O3) Thick Films Deposited by Aerosol Deposition Method , 1999 .

[22]  Ralf Moos,et al.  Zeolite cover layer for selectivity enhancement of p-type semiconducting hydrocarbon sensors , 2008 .

[23]  U. Weimar,et al.  Understanding the fundamental principles of metal oxide based gas sensors; the example of CO sensing with SnO2 sensors in the presence of humidity , 2003 .

[24]  Giuliano Martinelli,et al.  Gas-sensitive electrical properties of perovskite-type SmFeO3 thick films , 1998 .

[25]  S. Jakobs,et al.  Investigation of electrochemical oxygen sensors with solid electrolytes and oxide powder electrodes , 1990 .

[26]  Udo Weimar,et al.  In situ diffuse reflectance infrared spectroscopy study of CO adsorption on SnO2 , 2001 .

[27]  D. Westphal,et al.  Gold-composite electrodes for hydrocarbon sensors based on YSZ solid electrolyte , 2001 .

[28]  Ralf Moos,et al.  Sulfur adsorber for thick-film exhaust gas sensors , 2003 .

[29]  O. Schäf,et al.  Basic investigations on zeolite application for electrochemical analysis , 2000, Fresenius' journal of analytical chemistry.

[30]  Ralf Moos,et al.  Direct thermoelectric gas sensors: Design aspects and first gas sensors , 2007 .

[31]  R. Hancox,et al.  The predictive value of exhaled nitric oxide measurements in assessing changes in asthma control. , 2001, American journal of respiratory and critical care medicine.

[32]  S. Akbar,et al.  Solid‐State Gas Sensors: A Review , 1992 .

[33]  Norio Miura,et al.  Detection of propene by using new-type impedancemetric zirconia-based sensor attached with oxide sensing-electrode , 2006 .

[34]  Udo Weimar,et al.  Investigations of conduction mechanism in Cr2O3 gas sensing thick films by ac impedance spectroscopy and work function changes measurements , 2008 .

[35]  Maximilian Fleischer,et al.  The influence of interfaces and interlayers on the gas sensitivity in work function type sensors , 2003 .

[36]  Theodor Doll,et al.  Reliable hybrid GasFETs for work-function measurements with arbitrary materials , 1994 .

[37]  U. Weimar,et al.  Metal/SnO2 interface effects on CO sensing; operando studies , 2007, 2007 IEEE Sensors.

[38]  Ralf Moos,et al.  Development and working principle of an ammonia gas sensor based on a refined model for solvate supported proton transport in zeolites , 2003 .

[39]  Ralf Moos,et al.  Thick-film solid electrolyte oxygen sensors using the direct ionic thermoelectric effect , 2009 .

[40]  I. Eisele,et al.  Low power gas detection with FET sensors , 2001 .

[41]  Nicolae Barsan,et al.  Sensing low concentrations of CO using flame-spray-made Pt/SnO2 nanoparticles , 2006 .

[42]  Hiroyuki Kudo,et al.  A bio-sniffer stick with FALDH (formaldehyde dehydrogenase) for convenient analysis of gaseous formaldehyde , 2008 .

[43]  O. Schäf,et al.  Sensors for combustible gas components using modified single crystal zeolites , 1997 .

[44]  Gunter Hagen,et al.  Four-Wire Impedance Spectroscopy on Planar Zeolite/Chromium Oxide Based Hydrocarbon Gas Sensors , 2007, Sensors.

[45]  C. Svensson,et al.  A hydrogen-sensitive Pd-gate MOS transistor , 1975 .

[46]  Akio Yasuda,et al.  Vapor Sorption and Electrical Response of Au‐Nanoparticle– Dendrimer Composites , 2007 .

[47]  Uwe Lampe,et al.  GasFET for the detection of reducing gases , 2005 .

[48]  シェーナウアー,ウルリッヒ,et al.  Oxygen sensor based on undoped cuprate , 1994 .

[49]  R. Pohle,et al.  Realization of a new sensor concept: improved CCFET and SGFET type gas sensors in Hybrid Flip-Chip technology , 2003, TRANSDUCERS '03. 12th International Conference on Solid-State Sensors, Actuators and Microsystems. Digest of Technical Papers (Cat. No.03TH8664).

[50]  Ralf Moos,et al.  Thermopower of Sr1−xLaxTiO3 ceramics , 1995 .

[51]  Carsten Plog,et al.  The effect of NH3 on the ionic conductivity of dehydrated zeolites Na beta and H beta , 1998 .

[52]  Ralf Moos,et al.  Hydrocarbon sensing with thick and thin film p-type conducting perovskite materials , 2005 .

[53]  Gunter Hagen,et al.  An initial physics-based model for the impedance spectrum of a hydrocarbon sensor with a zeolite/Cr2O3 interface , 2008 .

[54]  Thorsten Wagner,et al.  Gas sensor based on ordered mesoporous In2O3 , 2009 .

[55]  N. Bârsan,et al.  Conduction Model of Metal Oxide Gas Sensors , 2001 .

[56]  Harry L. Tuller,et al.  Defect Structure and Electrical Properties of Single‐Crystal Ba0.03Sr0.97TiO3 , 1988 .

[57]  Erik O. Ahlgren,et al.  Thermoelectric power of stabilized zirconia , 1995 .

[58]  H. Meixner,et al.  CO sensitivity of the PtO/SnO2 and PdO/SnO2 layer structures: Kelvin probe and XPS analysis , 2003 .

[59]  K. Sahner,et al.  Modeling of hydrocarbon sensors based on p-type semiconducting perovskites. , 2007, Physical chemistry chemical physics : PCCP.

[60]  Jens Zosel,et al.  Au–oxide composites as HC-sensitive electrode material for mixed potential gas sensors , 2002 .

[61]  Ingo Klimant,et al.  Novel oxygen sensor material based on a ruthenium bipyridyl complex encapsulated in zeolite Y: dramatic differences in the efficiency of luminescence quenching by oxygen on going from surface-adsorbed to zeolite-encapsulated fluorophores , 1995 .

[62]  P. Moseley,et al.  Solid state gas sensors , 1997 .

[63]  Udo Weimar,et al.  Sensing of hydrocarbons with tin oxide sensors: possible reaction path as revealed by consumption measurements , 2003 .

[64]  R. Moos,et al.  Direct Thermoelectric Hydrocarbon Gas Sensors Based on ${\rm SnO}_{2}$ , 2007, IEEE Sensors Journal.

[65]  J. Stetter,et al.  Amperometric gas sensors--a review. , 2008, Chemical reviews.

[66]  Chi-En Lu,et al.  Humidity Sensors: A Review of Materials and Mechanisms , 2005 .

[67]  Jens Zosel,et al.  Perovskite related electrode materials with enhanced NO sensitivity for mixed potential sensors , 2008 .

[68]  Norio Miura,et al.  Highly selective CO sensor using stabilized zirconia and a couple of oxide electrodes , 1998 .

[69]  Udo Weimar,et al.  Flip-chip suspended gate field effect transistors for ammonia detection , 2005 .

[70]  U. Weimar,et al.  Detection of volatile compounds correlated to human diseases through breath analysis with chemical sensors , 2002 .

[71]  G. Heiland,et al.  Zum Einfluß von Wasserstoff auf die elektrische Leitfähigkeit an der Oberfläche von Zinkoxydkristallen , 1957 .

[72]  Ralf Moos,et al.  Selectivity enhancement of p-type semiconducting hydrocarbon sensors—The use of sol-precipitated nano-powders , 2008 .

[73]  J. Weitkamp,et al.  Zeolites and catalysis , 2000 .

[74]  C. Senft,et al.  A GasFET concept for high temperature operation , 2008, 2008 IEEE Sensors.

[75]  R. P. Gupta,et al.  Oxide Materials for Development of Integrated Gas Sensors—A Comprehensive Review , 2004 .

[76]  Maria Luisa Grilli,et al.  Non-Nernstian Planar Sensors Based on YSZ with an Nb2O5 Electrode: Discussion on Sensing Mechanism , 2006 .

[77]  Ralf Moos,et al.  Miniaturized low temperature co-fired ceramics (LTCC) biosensor for amperometric gas sensing , 2008 .

[78]  Ulrich Simon,et al.  Preparation and Gas Sensing Characteristics of Nanoparticulate p‐Type Semiconducting LnFeO3 and LnCrO3 Materials , 2007 .

[79]  I. Karube,et al.  Gas-Phase Biosensor for Ethanol , 1994 .

[80]  Sanjay Mathur,et al.  Insight into the Role of Oxygen Diffusion in the Sensing Mechanisms of SnO2 Nanowires , 2008 .

[81]  Ralf Moos,et al.  Amperometric Enzyme‐Based Biosensor for Direct Detection of Formaldehyde in the Gas Phase: Dependence on Electrolyte Composition , 2008 .

[82]  Ralf Moos,et al.  Cuprate-ferrate compositions for temperature independent resistive oxygen sensors , 2006 .

[83]  H. Lorenz,et al.  New suspended gate FET technology for physical deposition of chemically sensitive layers , 1990 .

[84]  Hans‐Heinrich Möbius,et al.  Solid‐State Electrochemical Potentiometric Sensors for Gas Analysis , 2008 .

[85]  T. Galonska,et al.  Stability of FET - Based Hydrogen Sensors at High Temperatures , 2007, 2007 IEEE Sensors.

[86]  Ralf Moos,et al.  Gas Diffusion Electrodes for Use in an Amperometric Enzyme Biosensor , 2008 .

[87]  Jens Zosel,et al.  Mixed potential gas sensor with short response time , 2008 .

[88]  Johann Riegel,et al.  Exhaust gas sensors for automotive emission control , 2002 .

[89]  Sheikh A. Akbar,et al.  Ceramic electrolytes and electrochemical sensors , 2003 .

[90]  Norio Miura,et al.  NO2 sensing performances of planar sensor using stabilized zirconia and thin-NiO sensing electrode , 2008 .

[91]  Enrico Traversa,et al.  Crystallographic characterization and NO2 gas sensing property of LnFeO3 prepared by thermal decomposition of LnFe hexacyanocomplexes, Ln[Fe(CN)6]·nH2O, Ln = La, Nd, Sm, Gd, and Dy , 2003 .

[92]  Nicolae Barsan,et al.  DRIFT studies of thick film un-doped and Pd-doped SnO2 sensors: temperature changes effect and CO detection mechanism in the presence of water vapour , 2003 .

[93]  C. Scheibe,et al.  Combustion gas sensitivity of zeolite layers on thin-film capacitors , 1995 .

[94]  J. Zosel,et al.  Electrochemical solid electrolyte gas sensors — hydrocarbon and NOx analysis in exhaust gases , 2004 .

[95]  J. Janata,et al.  Temperature-controlled Kelvin microprobe , 1993 .

[96]  W. Widanarto,et al.  A GasFET for chlorine detection , 2005, IEEE Sensors, 2005..

[97]  Gunter Hagen,et al.  Zeolite-based Impedimetric Gas Sensor Device in Low-cost Technology for Hydrocarbon Gas Detection , 2008, Sensors.

[98]  Herbert Pfeifer,et al.  Zeolite based trace humidity sensor for high temperature applications in hydrogen atmosphere , 2008 .

[99]  S Mathur,et al.  Portable microsensors based on individual SnO2 nanowires , 2007, Nanotechnology.

[100]  Ralf Moos,et al.  P-type semiconducting perovskite sensors for reducing gases: model description , 2008 .

[101]  Michael Levin,et al.  NOx Control Development with Urea SCR on a Diesel Passenger Car , 2004 .

[102]  Udo Weimar,et al.  Water–oxygen interplay on tin dioxide surface: Implication on gas sensing , 2005 .

[103]  T. Seiyama,et al.  A New Detector for Gaseous Components Using Semiconductive Thin Films. , 1962 .

[104]  Ralf Moos,et al.  Temperature-modulated direct thermoelectric gas sensors: thermal modeling and results for fast hydrocarbon sensors , 2009 .

[105]  Nicolae Barsan,et al.  Template-free synthesis and assembly of single-crystalline tungsten oxide nanowires and their gas-sensing properties. , 2005, Angewandte Chemie.

[106]  Norio Miura,et al.  Impedancemetric gas sensor based on zirconia solid electrolyte and oxide sensing electrode for detecting total NOx at high temperature , 2003 .

[107]  Lutz Mädler,et al.  Fundamental studies on SnO2 by means of simultaneous work function change and conduction measurements , 2005 .

[108]  C. Richard A. Catlow,et al.  Experimental and computational study of the gas-sensor behaviour and surface chemistry of the solid-solution Cr2−xTixO3(x≤ 0.5) , 2002 .

[109]  N. Bârsan,et al.  Metal oxide-based gas sensor research: How to? , 2007 .

[110]  Ralf Moos,et al.  Materials for temperature independent resistive oxygen sensors for combustion exhaust gas control , 2000 .

[111]  Udo Weimar,et al.  Sensing of hydrocarbons and CO in low oxygen conditions with tin dioxide sensors: possible conversion paths , 2004 .

[112]  Ralf Moos,et al.  Assessment of the novel aerosol deposition method for room temperature preparation of metal oxide gas sensor films , 2009 .

[113]  Noboru Yamazoe,et al.  Toward innovations of gas sensor technology , 2005 .

[114]  Udo Weimar,et al.  An n- to p-type conductivity transition induced by oxygen adsorption on α-Fe2O3 , 2004 .

[115]  U. Weimar,et al.  Understanding the fundamental principles of metal oxide based gas sensors; the example of CO sensing with SnO2 sensors in the presence of humidity , 2003 .

[116]  Dieter Janke,et al.  A new immersion sensor for the rapid electrochemical determination of dissolved oxygen in metallic melts , 1981 .

[117]  Maria Luisa Grilli,et al.  Sensing Mechanism of Potentiometric Gas Sensors Based on Stabilized Zirconia with Oxide Electrodes Is It Always Mixed Potential , 2004 .

[118]  Gunter Hagen,et al.  Selective impedance based gas sensors for hydrocarbons using ZSM-5 zeolite films with chromium(III)oxide interface , 2006 .

[119]  Jeffrey W. Fergus,et al.  Solid electrolyte based sensors for the measurement of CO and hydrocarbon gases , 2007 .

[120]  Akio Yasuda,et al.  Chemiresistor coatings from Pt- and Au-nanoparticle/nonanedithiol films: sensitivity to gases and solvent vapors , 2004 .

[121]  Gunter Hagen,et al.  Zeolites — Versatile materials for gas sensors , 2008 .

[122]  Francesca Peiró,et al.  Development and characterisation of a screen-printed mixed potential gas sensor , 2007 .

[123]  Ulrich Simon,et al.  Electrical detection of different amines with proton-conductive H-ZSM-5 , 2005 .

[124]  I. Eisele,et al.  Gold and platinum as ozone sensitive layer in work-function gas sensors , 2001 .

[125]  P. Amels,et al.  Studies on the ionic conductivity of zeolitic solids , 1994 .

[126]  P. Kornetzky,et al.  The capacitively controlled field effect transistor (CCFET) as a new low power gas sensor , 1996 .

[127]  H. H. Moebius,et al.  Solid-State Electrochemical Potentiometric Sensors for Gas Analysis , 2010 .

[128]  Theodor Doll,et al.  Adsorbed water as key to room temperature gas-sensitive reactions in work function type sensors: the carbonate–carbon dioxide system , 1999 .

[129]  R. Härtung,et al.  Brenngas-sensitive gassymmetrische galvanische Zellen mit oxidionenleitenden Festelektrolyten , 1981 .

[130]  Ralf Moos,et al.  Amperometric Enzyme-based Gas Sensor for Formaldehyde: Impact of Possible Interferences , 2008, Sensors.

[131]  Ralf Moos,et al.  Direct Thermoelectric Hydrocarbon Gas Sensors Based on , 2007 .

[132]  Radu Ionescu,et al.  COMBINED SEEBECK AND RESISTIVE SNO2 GAS SENSORS, A NEW SELECTIVE DEVICE , 1998 .

[133]  Ralf Moos,et al.  Temperature-independent resistive oxygen exhaust gas sensor for lean-burn engines in thick-film technology , 2003 .

[134]  Ellen Ivers-Tiffée,et al.  Temperature-independent resistive oxygen sensors based on SrTi1−xFexO3−δ solid solutions , 2005 .

[135]  Nicolae Barsan,et al.  Flame spray synthesis of tin dioxide nanoparticles for gas sensing , 2004 .

[136]  Ralf Moos,et al.  Response kinetics of temperature-independent resistive oxygen sensor formulations: a comparative study , 2006 .

[137]  Jian Wang,et al.  NO x Sensing Characteristics of Mixed-Potential-Type Zirconia Sensor Using NiO Sensing Electrode at High Temperatures , 2005 .

[138]  Ralf Moos,et al.  Electrodeposited and Sol-gel Precipitated p-type SrTi1-xFexO3-δ Semiconductors for Gas Sensing , 2007, Sensors.

[139]  Nicolae Barsan,et al.  Sensing of CH4, CO and ethanol with in situ nanoparticle aerosol-fabricated multilayer sensors , 2007 .

[140]  A. Cornet,et al.  Use of zeolite films to improve the selectivity of reactive gas sensors , 2003 .

[141]  G. Korotcenkov Metal oxides for solid-state gas sensors: What determines our choice? , 2007 .

[142]  Philippe Benech,et al.  Gas separation with a zeolite filter, application to the selectivity enhancement of chemical sensors , 2000 .

[143]  Norio Miura,et al.  Detection of combustible hydrogen-containing gases by using impedancemetric zirconia-based water-vapor sensor , 2005 .

[144]  Ralf Moos,et al.  Recent Developments in the Field of Automotive Exhaust Gas Ammonia Sensing , 2008 .

[145]  Roland Pohle,et al.  Low-power gas sensors based on work-function measurement in low-cost hybrid flip-chip technology , 2001 .

[146]  I. Eisele,et al.  Hydrogen detection at high concentrations with stabilised palladium , 2001 .

[147]  Ralf Moos,et al.  Poisoning of Temperature Independent Resistive Oxygen Sensors by Sulfur Dioxide , 2004 .

[148]  Ralf Moos,et al.  Effect of electrodes and zeolite cover layer on hydrocarbon sensing with p-type perovskite SrTi0.8Fe0.2O3-δ thick and thin films , 2006 .

[149]  G. S. Wilson,et al.  Biosensors : fundamentals and applications , 1987 .

[150]  Gunter Hagen,et al.  Metal-Organic Frameworks for Sensing Applications in the Gas Phase , 2009, Sensors.

[151]  W. Harbeck,et al.  Ermittlung der Ausbrandgrenzen von Gasflammen mit Hilfe gaspotentiometrischer Bestimmungsmethoden , 1990 .

[152]  Daisuke Terada,et al.  Mixed-potential-type zirconia-based NOx sensor using Rh-loaded NiO sensing electrode operating at high temperatures , 2006 .

[153]  Ralf Moos,et al.  Morphology dependence of thermopower and conductance in semiconducting oxides with space charge regions , 2008 .

[154]  Harry L. Tuller,et al.  Novel deposition techniques for metal oxide: Prospects for gas sensing , 2010 .

[155]  Martin Liess,et al.  The Modulation of Thermoelectric Power by Chemisorption A New Detection Principle for Microchip Chemical Sensors , 2000 .

[156]  Ralf Moos,et al.  Dependence of the Intrinsic Conductivity Minimum of SrTiO3 Ceramics on the Sintering Atmosphere , 1995 .

[157]  Ulrich Simon,et al.  Workflow for High Throughput Screening of Gas Sensing Materials , 2006, Sensors (Basel, Switzerland).

[158]  Udo Weimar,et al.  CO consumption of Pd doped SnO2 based sensors , 2001 .